
Weighted Clustering: Towards Solving the User’s

Dilemma

Margareta Ackerman1a, Shai Ben-Davidb, Simina Branzeic, David Lokerd

aDepartment of Computer Science and Engineering
Santa Clara University

Santa Clara, CA
bCheriton School of Computer Science

University of Waterloo
Waterloo, ON

cPerdue University
Department of Computer Science

West Lafayette, IN
dWaveAI

Sunnyvale, CA

Abstract

This paper makes a major step towards addressing a long-standing challenge in cluster
analysis, known as the user’s dilemma, which is the problem of selecting an appropriate
clustering algorithm for a specific task. A formal approach for addressing this challenge
relies on the identification of succinct, user-friendly properties that capture formal differences
amongst clustering techniques. While helpful for gaining insight into the nature of clustering
paradigms, there is a theory-practice gap that has so far limited the utility of this approach:
Formal properties typically highlight advantages of classical linkage-based algorithms, while
practical experience shows that center-based methods are preferable for many applications.
We present simple new properties that delineate core differences between common clustering
paradigms and overcome this theory-practice gap. The properties we present give a formal
understanding of the advantages of center-based approaches for some applications and insight
into when different clustering paradigms should be used. These properties address how
sensitive algorithms are to changes in element frequencies, which we capture in a generalized
setting where every element is associated with a real-valued weight. To complement extensive
formal analysis, we discuss how these properties can be applied in practice.

1Corresponding author

Preprint submitted to Elsevier August 19, 2021

1. Introduction

Clustering is one of the most useful data mining tools, utilized in a wide range of appli-
cations, from astronomy to zoology. Yet, its theoretical underpinnings lag behind its wild
application. Even the fairly basic problem of which algorithm to select for a given appli-
cation, known as “the user’s dilemma,” is left to ad hoc solutions. Issues of running time
complexity and space usage remain the primary considerations when choosing clustering
techniques. Yet, for clustering, such considerations are insufficient: Different clustering al-
gorithms often produce radically different results on the same input, and as such, differences
in their input-output behavior should take precedence over computational concerns.

The user’s dilemma has been tackled since the 1970s ([23, 48]). A formal approach to this
problem proposes that we rely on succinct mathematical properties that reveal fundamental
differences in the input-output behaviour of different clustering algorithms (see, for example,
[23, 17, 5]). However there is an important theory-practice disconnect: Virtually all the
properties proposed in this framework highlight the advantages of linkage-based methods,
most of which are satisfied by single-linkage – an algorithm that often performs poorly in
practice. While prior properties give important insight into clustering algorithms, relying on
them for selecting an algorithm inevitably results in a linkage-based technique. According
to these properties, there is never a reason to choose, say, algorithms based on the k-means
objective ([42]), which often performs well in practice.

Of course, practitioners of clustering have known for a long time that, for many ap-
plications, variations of the k-means method outperform classical linkage-based techniques.
Unfortunately, a lack of clarity as to why this is the case leaves the “the user’s dilemma”
largely unsolved. Despite continued efforts to find better clustering methods, the ambiguous
nature of clustering precludes the existence of a single algorithm that will be suited for all
applications. As such, generally successful methods, such as popular algorithms for the k-
means objective, are nevertheless ill-suited for some applications. To this end, it is necessary
for users of clustering to understand how clustering paradigms differ in their input-output
behavior.

Unfortunately, informal recommendations are not sufficient. Many such recommenda-
tions advise to use k-means when the true clusters are spherical and to apply single-linkage
when they may possess arbitrary shape. Such advice can be insufficient, as clustering users
know that single-linkage can fail to detect arbitrary-shaped clusters, and k-means does not
always succeed when clusters are spherical. Further insight comes from viewing data as a
mixture model (when variations of k-means, particularly EM, are known to perform well),
but most users don’t have information on how their data is generated when applying clus-
tering to real data. Another common way to differentiate clustering methods is to partition
them into partitional and hierarchical and to imply that users should choose algorithms
based on this consideration. Although the format of the output is important, it does not
address fundamental differences, as most clustering approaches can be expressed in both
frameworks.2

2For example, k-means can be reconfigured to output a hierarchy using Ward’s method and Bisecting

2

The lack of formal understanding of the key differences between clustering paradigms
leaves users at a loss when selecting algorithms. In practice, many users give up on clustering
altogether when a single algorithm that had been successful on a different data set fails
to attain a satisfactory clustering on new data. Without a clear understanding as to the
manner in which algorithms differ can prevent user from selecting appropriate methods, or
even sampling a few diverse techniques.

This paper identifies the first set of properties that differentiates between some of the
most popular clustering methods, while highlighting advantages of k-means (and similar)
methods. The properties go to the heart of the difference between some clustering methods.
In an effort to propose properties that are useful in practice, we have distilled our analysis of
clustering methods to several elegant properties, which are easy to understand and apply in
practice. We believe this to be a substantial step forward towards solving the user’s dilemma.

The properties proposed in this paper distill to the rather basic concept of how different
clustering methods react to element duplication. This leads to three surprisingly simple
categories, each highlighting when some clustering paradigms should be used over others.
To this end, we consider a generalization of the notion of element duplication by casting
the clustering problem in the weighted setting, where each element is associated with a real
valued weight.

This generalized setting enables more accurate representation of some clustering in-
stances. Consider, for instance, vector quantization, which aims to find a compact encoding
of signals that has low expected distortion. The accuracy of the encoding is most important
for signals that occur frequently. With weighted data, such a consideration is easily captured
by having the weights of the points represent signal frequencies. When applying clustering
to facility allocation, such as the placement of police stations in a new district, the distribu-
tion of the stations should enable quick access to most areas in the district. However, the
accessibility of different landmarks to a station may have varying importance. The weighted
setting enables a convenient method for prioritizing certain landmarks over others.

It is important to note that while the weighted setting has independent interest, the
classical un-weighted clustering model can be readily mapped to the weighted framework
by replacing duplicates with integer weights representing the number of occurrences of each
data point. As such, all of the results presented here also apply in the traditional setting,
which does not require points to be weighted.

We formulate intuitive properties that may allow a user to select an algorithm based on
how it treats weighted data (or, element duplicates). These surprisingly simple properties are
able to distinguish between classes of clustering techniques and clearly delineate instances
in which some methods are preferred over others, without having to resort to assumptions
about how the data may have been generated. As such, they may aid in the clustering
selection process for clustering users at all levels of expertise.

Based on these properties we obtain a classification of clustering algorithms into three

k-mean, and classical hierarchical methods can be terminated using a variety of termination conditions ([30])
to obtain a single partition instead of a hierarchy.

3

categories: those that are affected by weights on all data sets, those that ignore weights, and
those methods that respond to weights on some configurations of the data but not on others.
Among the methods that always respond to weights are several well-known algorithms, such
as k-means and k-median. On the other hand, algorithms such as single-linkage, complete-
linkage, and min-diameter ignore weights.

From a theoretical perspective, perhaps the most notable is the last category. We find
that methods belonging to that category are robust to weights when data is sufficiently
clusterable, and respond to weights otherwise. Average-linkage as well as the well-known
spectral objective function, ratio cut, both fall into this category. We characterize the precise
conditions under which these methods are influenced by weights.

Finally, we include a discussion of how the properties introduced in this work can help to
find suitable clustering algorithms in practice, as well as the relation between the framework
proposed here to clustering constructs such as validity indices and clusterability measures.
While not intended to solve the user’s dilemma in all instances, the properties that we present
offer clear guidance on an important dimension differentiating clustering techniques, and, in
some cases, are sufficient for identifying a suitable algorithm. We hope that this line of
research will continue to grow to include other properties that, when considered together,
will provide a comprehensive solution to the user’s dilemma.

1.1. Related Work

Clustering algorithms are usually analyzed in the context of unweighted data. The
weighted clustering framework was briefly considered in the early 70s, but wasn’t devel-
oped further until now. Fisher and Van Ness [23] introduced several properties of clustering
algorithms. Among these, they include “point proportion admissibility,” which requires that
the output of an algorithm should not change if any points are duplicated. They then ob-
serve that a few algorithms are point proportion admissible. However, clustering algorithms
can display a much wider range of behaviours on weighted data than merely satisfying or
failing to satisfy point proportion admissibility. We carry out the first extensive analysis of
clustering on weighted data, characterizing the precise conditions under which algorithms
respond to weight.

In addition, Wright [48] proposed a formalization of cluster analysis consisting of eleven
axioms. In two of these axioms, the notion of mass is mentioned. Namely, that points with
zero mass can be treated as non-existent, and that multiple points with mass at the same
location are equivalent to one point with weight the sum of the masses. The idea of mass
has not been developed beyond stating these axioms in their work.

After these early works on foundations of clustering, interest in axioms and properties
of clustering saw a notable resurgence since the early 2000s following the publication of
Kleinberg’s [30] famous impossibility theorem, where he proved that three seemingly natural
properties cannot be simultaneously satisfied by any clustering method. Follow up work
often seeked to overcome the impossibility result by either considering alternate clustering
settings or considering modifications to Kleinberg’s axioms. For example, it has been shown
that Kleinberg’s axioms are consistent in the context of clustering quality measures [4], and

4

variations of his original “consistency” axiom have been shown to resolve the impossibil-
ity [20, 33]. These axioms have also been studied in the context of the k-means algorithm,
often showing that variations of some of the axioms hold for this popular method [31, 47, 32].

Following Kleinberg’s work, most property analysis of clustering techniques, including
research that does not focus on this axioms, has been in the unweighted clustering set-
tings for both partitional [2, 17, 5, 16] and hierarchical clustering [1]. Previous work in this
line of research centers on classical linkage-based methods and their advantages. Particu-
larly well-studied is the single-linkage algorithm, for which there are multiple property-based
characterizations, showing that single-linkage is the unique algorithm that satisfies several
sets of properties [27, 17, 19]. The entire family of linkage-based algorithms was character-
ized [2, 1], differentiating those algorithms from other clustering paradigms by presenting
some of the advantages of those methods. In addition, previous property-based taxonomies
in this line of work highlight the advantages of linkage-based methods [5, 23]. Despite the
emphasis on linkage-based methods in the theory literature, empirical studies and user ex-
perience have shown that, in many cases, other techniques produce more useful clusterings
than those obtained by classical linkage-based methods. Here we propose categories that
distinguish between clustering paradigms while also showing when other techniques, such as
popular center-based methods, may be more appropriate. Our work falls under the broader
framework of aiming to bridge theory and practice in clustering. See [12] for further dis-
cussion on the disconnect between theory and practice as it relates to the clustering user
dilemma.

Another related direction is the study of robustness criteria, which aims to identify
whether clustering techniques are reliable by studying whether they remain (fairly) consis-
tent under various conditions (ex. data perturbation or the presence of outliers). Robustness
criteria were studied for k-means [34], k-center [10] density-based techniques [28] and spec-
tral clustering [38], amongst other methods [36]. This type of analysis is often approached
from the perspective that robustness is inherently desirable. We emphasize that our analysis
of weight sensitivity and robustness is approached from a different standpoint. We analyse
how algorithms react to changes in weights in order to help users determine which clustering
technique is best applied to their specific application, as different weight responses are ap-
propriate under different circumstances. In particular, weight robustness is only appropriate
under certain circumstances.

Finally, another related area of research is the study of clusterability, which aims to
evaluate the degree of inherent cluster structure in data. While many formal methods for
clusterability evaluation have been proposed, a formal analysis reveals that they are often
pairwise inconsistent [3]. As such, a variation of the user’s dilemma arises, whereby the user
needs to choose which clusterability method they are to apply for the application at hand.
Recently, there has been progress towards the clusterability version of the user’s dilemma [6],
with an extensive analysis of clusterability methods and recommendations for how to select
a clusterability technique. In this paper, we rely on notions of clusterability to elucidate the
behaviour of several weight-considering techniques.

5

2. Preliminaries

A weight function w over X is a function w : X → R+, mapping elements of X to positive
real numbers. Given a domain set X, denote the corresponding weighted domain by w[X],
thereby associating each element x ∈ X with weight w(x). A dissimilarity function is a
symmetric function d : X ×X → R+ ∪ {0}, such that d(x, y) = 0 if and only if x = y.3 We
consider weighted data sets of the form (w[X], d), where X is some finite domain set, d is a
dissimilarity function over X, and w is a weight function over X.

A k-clustering C = {C1, C2, . . . , Ck} of a domain set X is a partition of X into 1 < k < |X|
disjoint, non-empty subsets of X where ∪iCi = X. A clustering of X is a k-clustering for
some 1 < k < |X|. To avoid trivial partitions, clusterings that consist of a single cluster, or
where every cluster has a unique element, are not permitted.

Denote the weight of a cluster Ci ∈ C by w(Ci) =
∑

x∈Ci
w(x). For a clustering C, let |C|

denote the number of clusters in C. For x, y ∈ X and clustering C of X, write x ∼C y if x
and y belong to the same cluster in C and x 6∼C y, otherwise.

A partitional weighted clustering algorithm is a function that maps a data set (w[X], d)
and an integer 1 < k < |X| to a k-clustering of X.

A binary hierarchy H of X is a pair (T,M) where T is a strictly binary rooted tree and
M : leaves(T) → X is a bijection. Since the current paper is only concerned with binary
hierarchies, for brevity, we refer to a “binary hierarchy” as a “hierarchy.” A hierarchical
weighted clustering algorithm is a function that maps a data set (w[X], d) to a hierarchy of
X. A set C0 ⊆ X is a cluster in a hierarchy H = (T,M) of X if there exists a node x in T so
that C0 = {M(y) | y is a leaf and a descendent of x}. Two hierarchies of X are equivalent
if they contain the same clusters, and [H] denotes the equivalence class of hierarchy H.

For a hierarchical weighted clustering algorithm A, a clustering C = {C1, . . . , Ck} appears
in A(w[X], d) if Ci is a cluster in A(w[X], d) for all 1 ≤ i ≤ k. A partitional algorithm A
outputs clustering C on (w[X], d) if A(w[X], d, |C|) = C.

For the remainder of this paper, unless otherwise stated, we will use the term “clustering
algorithm” for “weighted clustering algorithm”.

The range of a partitional algorithm on a data set is the set of clusterings it outputs on
that data over all weight functions.

Definition 1 (Range (Partitional)). Given a partitional clustering algorithm A, a data set
(X, d), and 1 ≤ k ≤ |X|, let range(A(X, d, k)) = {C | ∃w such that C = A(w[X], d)}, i.e.
the set of k-clusterings that A outputs on (X, d) over all possible weight functions.

The range of a hierarchical algorithm on a data set is the set of hierarchies it outputs on
that data over all weight functions.

3We note that the requirement that d(x, y) = 0 =⇒ x = y is not always included in the definition
of dissimilarity functions. When this condition holds, then the dissimilarity function can be referred to as
proper. We utilize proper dissimilarity functions throughout this paper.

6

Definition 2 (Range (Hierarchical)). Given a hierarchical clustering algorithm A and a
data set (X, d), let range(A(X, d)) = {[H] | ∃w such that H = A(w[X], d)}, i.e. the set of
hierarchies that A outputs on (X, d) over all possible weight functions.

3. Basic Categories

Different clustering algorithms exhibit radically different response to weighted data. In
this section we introduce a formal categorization of clustering algorithms based on their re-
sponse to weights. This categorization identifies fundamental differences between clustering
paradigms, while highlighting when some of the more empirically successful methods should
be used. These properties can assist clustering users in selecting a suitable method by simply
considering how an algorithm should react to element duplication for a given application. Af-
ter introducing the three categories, we present a classification of some well-known clustering
methods according to their response to weight, summarized in Table 1.

3.1. Weight Robust Algorithms

We first introduce the notion of “weight robust” algorithms. Weight robustness requires
that the output of the algorithm be unaffected by changes of element weights (or, the number
of occurrences of each point in the unweighted setting). This category is closely related to
“point proportion admissibility” by [23].

Definition 3 (Weight Robust (Partitional)). A partitional algorithm A is weight-robust if
for all (X, d) and 1 < k < |X|, |range(A(X, d, k))| = 1.

The definition in the hierarchical setting is analogous.

Definition 4 (Weight Robust (Hierarchical)). A hierarchical algorithm A is weight-robust
if for all (X, d), |range(A(X, d))| = 1.

At first glance, this appears to be a desirable property. A weight robust algorithm is
able to keep sight on the geometry of the data without being “distracted” by weights, or
element duplicates. Indeed, when a similar property was proposed by [23], it was presented
as a desirable characteristic.

Yet, notably, few algorithms possess it (particularly single-linkage, complete-linkage, and
min-diamater), while most techniques, including those with a long history of empirical suc-
cess, fail this property. This brings into question how often is weight-robustness a desirable
characteristic, and suggests, that at least for some applications, sensitivity to weights may be
an advantage. Significantly, the popular k-means and similar methods fail weight robustness
in a strong sense, being “weight sensitive.”

3.2. Weight Sensitive Algorithms

We now introduce the definition of “weight sensitive” algorithms.

Definition 5 (Weight Sensitive (Partitional)). A partitional algorithm A is weight-sensitive
if for all (X, d) and 1 < k < |X|, |range(A(X, d, k))| > 1.

7

Figure 1: An example of different cluster structures in the same data, illustrating inherent tradeoffs between
separation and cluster balance. The clustering on the left finds inherent structure in the data by identifying
well-separated partitions, while the clustering on the right discovers structure in the data by focusing on the
dense region, achieving more balanced cluster sizes. The correct partitioning depends on the application at
hand.

The definition is analogous for hierarchical algorithms.

Definition 6 (Weight Sensitive (Hierarchical)). A hierarchical algorithm A is weight-sensitive
if for all (X, d) where |X| > 2, |range(A(X, d))| > 1.

Note that this definition is quite extreme. It means that no matter how well-separated the
clusters are, the output of a weight-sensitive algorithm can be altered by modifying some
of the weights. That is, a weight-sensitive algorithm will miss arbitrarily well-separated
clusters, for some weighting of its elements. In practice, weight sensitive algorithms tend to
aim for balanced cluster sizes, and so prioritize a balance in cluster sizes (or, sum of cluster
weights) over separation between clusters.

While weight-robust algorithms are interested exclusively in the geometry of the data,
weight-sensitive techniques have two potentially conflicting considerations: The weight of
the points and the geometry of the data. For instance, consider the data in Figure 1, which
has two distinct 3-clusterings, one which provides superior separation between clusters, and
another in which clusters sizes are balanced. Note how different are the two clusterings from
each other. All the weight-sensitive methods we consider select the clustering on the right,
as it offers more balanced clusters. On the other hand, the weight-robust methods we study
pick the clustering on the left hand side, as it offers better cluster separation.

Another way we could think of weight sensitive algorithm is that, unlike weight-robust
methods, weight sensitive algorithms allow the weights to alter the geometry of the data. In
contrast, weight robust techniques do not allow the weights of the points to “interfere” with
the underlying geometry.

It is important to note that there appear to be implications of these categories that
apply to data that is neither weighted nor contains element duplicates. Considering the
algorithms we analyzed (summarized in Table 1), the behaviour we observe on element
duplicates extends to “near-duplicates,” which are closely positioned elements. Furthermore,

8

the weight response of an algorithm sheds light on how it treats dense regions. In particular,
weight sensitive algorithms have a tendency to “zoom in” on areas of high density, effectively
ignoring sparse regions, as shown on the right-hand side of Figure 1.

Finally, the last category considered here offers a compromise between weight-robustness
and weight-sensitivity. We refer to this category as weight considering.

3.3. Weight Considering Algorithms

Definition 7 (Weight Considering (Partitional)). A partitional algorithm A is weight-
considering if

• There exist (X, d) and 1 < k < |X| so that |range(A(X, d, k))| = 1, and

• There exist (X, d) and 1 < k < |X| so that |range(A(X, d, k))| > 1.

The definition carries over to the hierarchical setting as follows.

Definition 8 (Weight Considering (Hierarchical)). A hierarchical algorithm A is weight-
considering if

• There exist (X, d) with |X| > 2 so that |range(A(X, d))| = 1, and

• There exist (X, d) with |X| > 2 so that |range(A(X, d))| > 1.

Weight considering methods appear to have the best of both worlds. The weight-
considering algorithms that we analyzed (average-linkage and ratio-cut), ignore weights when
clusters are sufficiently well-separated and otherwise takes them into consideration. Yet, it
is important to note that this is only desirable in some instances. For example, when cluster
balance is critical, as may be the case for market segmentation, weight-sensitive methods
may be preferable over weight considering ones. On the other hand, when the distribution
may be highly biased, as is often the case for phylogenetic analysis, weight-considering meth-
ods may offer a satisfactory compromise between weight-sensitivity and weight-robustness.
Weight-considering algorithms can detect well-separated clusters, possibly of radically dif-
ferent sizes, without entirely disregarding weights. Notably, of all the classical clustering
algorithms studied here, average-linkage, a weight-considering technique, is the only one
that is commonly applied to phylogenetic analysis.

The following table presents a classification of classical clustering methods based on these
three categories. Sections 4 and 5 provide the proof for the results summarized below. In
addition, these sections also characterize precisely when the weight-considering techniques
studied here respond to weights. An expanded table that includes heuristics, with a corre-
sponding analysis, is included in Section 6.

To formulate clustering algorithms in the weighted setting, we consider their behaviour
on data that allows duplicates. If we allow for semi-definite dissimiliary functions, given a
data set (X, d), elements x, y ∈ X are duplicates if d(x, y) = 0 and d(x, z) = d(y, z) for
all z ∈ X. In a Euclidean space, duplicates correspond to elements that occur at the same
location. We obtain the weighted version of a data set by de-duplicating the data, and

9

Partitional Hierarchical

Weight k-means, k-medoids Ward’s method
Sensitive k-median, Min-sum Bisecting k-means
Weight
Considering Ratio-cut Average-linkage
Weight Min-diameter Single-linkage
Robust k-center Complete-linkage

Table 1: A classification of clustering algorithms based on their response to weighted data.

associating every element with a weight equaling the number of duplicates of that element
in the original data. The weighted version of an algorithm partitions the resulting weighted
data in the same manner that the unweighted version partitions the original data. As shown
throughout the paper, this translation leads to natural formulations of weighted algorithms.
Please note that since we utilize proper dissimiliary functions, where d(x, y) = 0 =⇒ x = y,
all duplicates in our framework must be captured through weights.

4. Partitional Methods

In this section, we show that partitional clustering algorithms respond to weights in a va-
riety of ways. Many popular partitional clustering paradigms, including k-means, k-median,
and min-sum, are weight sensitive. It is easy to see that methods such as min-diameter
and k-center are weight-robust. We begin by analysing the behaviour of a spectral objective
function ratio cut, which exhibits interesting behaviour on weighted data by responding to
weight unless data is highly structured.

4.1. Ratio-Cut Clustering

We investigate the behaviour of a spectral objective function, ratio-cut ([45]), on weighted
data. Instead of a dissimilarity function, spectral clustering relies on a similarity function,
which maps pairs of domain elements to non-negative real numbers that represent how alike
the elements are. The ratio-cut of a clustering C is:

costrcut(C, w[X], s) =
1

2

∑
Ci∈C

∑
x∈Ci,y∈X\Ci

s(x, y) · w(x) · w(y)∑
x∈Ci

w(x)
.

The ratio-cut clustering function is:

rcut(w[X], s, k) = arg min
C;|C|=k

costrcut(C, w[X], s).

We prove that this function ignores data weights only when the data satisfies a very strict
notion of clusterability. To characterize precisely when ratio-cut responds to weights, we
first present a few definitions.

10

A clustering C of (w[X], s) is perfect if for all x1, x2, x3, x4 ∈ X where x1 ∼C x2 and
x3 6∼C x4, s(x1, x2) > s(x3, x4). C is separation-uniform if there exists λ so that for all
x, y ∈ X where x 6∼C y, s(x, y) = λ. Note that neither condition depends on the weight
function.

We show that whenever a data set has a clustering that is both perfect and separation-
uniform, then ratio-cut uncovers that clustering, which implies that ratio-cut is not weight-
sensitive. Note that, in particular, these conditions are satisfied when all within-cluster
similarities are set to zero. On the other hand, we show that ratio-cut does respond to
weights when either condition fails.

Lemma 1. If, given a data set (X, d), 1 < k < |X| and some weight function w, ratio-cut
outputs a k-clustering C that is not separation-uniform and where every cluster has more
than a single point, then |range(ratio-cut(X, d))| > 1.

Proof. We consider two cases.

Case 1: There is a pair of clusters with different similarities between them. Then there
exist C1, C2 ∈ C, x ∈ C1, and y ∈ C2 so that s(x, y) ≥ s(x, z) for all z ∈ C2, and there exists
a ∈ C2 so that s(x, y) > s(x, a).

Let w be a weight function such that w(x) = W for some sufficiently large W and weight
1 is assigned to all other points in X. Since we can set W to be arbitrarily large, when
looking at the cost of a cluster, it suffices to consider the dominant term in terms of W . We
will show that we can improve the cost of C by moving a point from C2 to C1. Note that
moving a point from C2 to C1 does not affect the dominant term of clusters other than C1

and C2. Therefore, we consider the cost of these two clusters before and after rearranging
points between these clusters.

Let A =
∑

a∈C2
s(x, a) and let m = |C2|. Then the dominant term, in terms of W , of the

cost of C2 is W
(
A
m

)
. The cost of C1 approaches a constant as W →∞.

Now consider clustering C ′ obtained from C by moving y from cluster C2 to cluster C1.

The dominant term in the cost of C2 becomes W
(

A−s(x,y)
m−1

)
, and the cost of C1 approaches

a constant as W →∞. By choice of x and by choice of y, if A−s(x,y)
m−1 < A

m
then C ′ has lower

loss than C when W is large enough. The inequality A−s(x,y)
m−1 < A

m
holds when A

m
< s(x, y),

and the latter holds by choice of x and by choice of y.

Case 2: The similarities between every pair of clusters are the same. However, there
are clusters C1, C2, C3 ∈ C, so that the similarities between C1 and C2 are greater than the
ones between C1 and C3. Let a and b denote the similarities between C1, C2 and C1, C3,
respectively.

Let x ∈ C1 and w a weight function, such that w(x) = W for large W , and weight 1 is
assigned to all other points in X. The dominant term comes from clusters going into C1,
specifically edges that include point x. The dominant term of the contribution of cluster C3

is Wb and the dominant term of the contribution of C2 is Wa, totaling Wa+Wb.

11

Now consider clustering C ′ obtained from clustering C by merging C1 with C2, and split-
ting C3 into two clusters (arbitrarily). The dominant term of the clustering comes from
clusters other than C1 ∪C2, and the cost of clusters outside C1 ∪C2 ∪C3 is unaffected. The
dominant term of the cost of the two clusters obtained by splitting C3 is Wb for each, for a
total of 2Wb. However, the factor of Wa that C2 previously contributed is no longer present.
This replaces the coefficient of the dominant term from a+ b to 2b, which improved the cost
of the clustering because b < a.

Lemma 2. If, given a data set (X, d), 1 < k < |X|, and some weight function w, ratio-cut
outputs a clustering C that is not perfect and where every cluster has more than a single
point, then |range(ratio-cut(X, d, k))| > 1.

Proof. If C is also not separation-uniform, then Lemma 1 can be applied, and so we can
assume that C is separation-uniform. Then there exists a within-cluster similarity in C that
is smaller than some between-cluster similarity, and all between cluster similarities are the
same. Specifically, there exist clusters C1 and C2, such that all the similarities between C1

and C2 are a, and there exist x, y ∈ C1 such that s(x, y) < a. Let b = s(x, y).
Let w be a weight function such that w(x) = W for large W , and weight 1 is assigned to

all other points in X. Then the dominant term in the cost of C2 is Wa, which comes from
the cost of points in cluster C2 going to point x. The cost of C1 approaches a constant as
W →∞.

Consider the clustering C ′ obtained from C by completely re-arranging all points in
C1, C2 ∈ C as follows:

1. Let {y, z} = C ′1 be one cluster for any z ∈ C2.

2. Let C ′2 = (C1 ∪ C2) \ C ′1 be the new second cluster.

The dominant term in C ′1, which comes from the cost of points in cluster C ′1 going to
point x, is

(
a+b
2

)
W , which is smaller than Wa since a > b. Note that the cost of each cluster

outside of C ′1 ∪ C ′2 remains unchanged. Since x ∈ C ′1, the cost of C ′1 approaches a constant
as W → ∞. Therefore, costrcut(C

′, w[X], s) is smaller than costrcut(C, w[X], s) when W is
sufficiently large.

Lemma 3. Given any data set (w[X], s) and 1 < k < |X| that has a perfect, separation-
uniform k-clustering C, ratio-cut(w[X], s, k) = C.

Proof. Let (w[X], s) be a weighted data set, with a perfect, separation-uniform clustering
C = {C1, . . . , Ck}. Recall that for any Y ⊆ X, w(Y) =

∑
y∈Y w(y). Then:

12

costrcut(C, w[X], s) =
1

2

k∑
i=1

∑
x∈Ci

∑
y∈Ci

s(x, y)w(x)w(y)∑
x∈Ci

w(x)

=
1

2

k∑
i=1

∑
x∈Ci

∑
y∈Ci

λw(x)w(y)∑
x∈Ci

w(x)

=
λ

2

k∑
i=1

∑
y∈Ci

w(y)
∑

x∈Ci
w(x)∑

x∈Ci
w(x)

=
λ

2

k∑
i=1

∑
y∈Ci

w(y)

=
λ

2

k∑
i=1

w(Ci) =
λ

2

k∑
i=1

[w(X)− w(Ci)]

=
λ

2

(
kw(X)−

k∑
i=1

w(Ci)

)
=
λ

2
(k − 1)w(X).

Consider any other clustering, C ′
= {C ′

1, . . . , C
′

k} 6= C. Since C is both perfect and
separation-uniform, all between-cluster similarities in C are λ, and all within-cluster similar-
ities are greater than λ. From here it follows that all pair-wise similarities in the data are
at least λ. Since C ′ is a k-clustering different from C, it must differ from C on at least one
between-cluster edge, so that edge must be greater than λ. Thus the cost of C ′

is:

costrcut(C
′
, w[X], s) =

1

2

k∑
i=1

∑
x∈C′

i

∑
y∈C′

i

s(x, y)w(x)w(y)∑
x∈C′

i
w(x)

>
1

2

k∑
i=1

∑
x∈C′

i

∑
y∈C′

i

λw(x)w(y)∑
x∈C′

i
w(x)

=
λ

2
(k − 1)w(X) = costrcut(C).

Thus clustering C ′
has a higher cost than C.

It follows that ratio-cut responds to weights on all data sets except those where it is
possible to obtain cluster separation that is both very large and highly uniform. This implies
that ratio cut is highly unlikely to be unresponsive to weights in practice.

Formally, we have the following theorem, which gives sufficient conditions for when ratio-
cut ignores weights, as well conditions that make this function respond to weights.

Theorem 4.1. Given any (X, d) and 1 < k < |X|,

1. if (X, d) has a clustering that is both perfect and separation uniform, then

|range(Ratio-cut(X, s, k))| = 1,

and

13

2. if range(Ratio-cut(X, s, k)) includes a clustering C that is not perfect or not separation-
uniform, and has no singleton clusters, then |range(Ratio-cut(X, s, k))| > 1.

Proof. The result follows by Lemma 1, Lemma 2, and Lemma 3.

4.2. K-Means

Many popular partitional clustering paradigms, including k-means (see [42] for a detailed
exposition of this popular objective function and related algorithms), k-median, and the
min-sum objective ([40]), are weight sensitive. Moreover, these algorithms satisfy a stronger
condition. By modifying weights, we can make these algorithms separate any set of points.
We call such algorithms weight-separable.

Definition 9 (Weight Separable). A partitional clustering algorithm A is weight-separable
if for any data set (X, d) and any S ⊂ X, where 2 ≤ |S| ≤ k, there exists a weight function
w so that x 6∼A(w[X],d,k) y for all distinct x, y ∈ S.

Note that every weight-separable algorithm is also weight-sensitive.

Lemma 4. If a clustering algorithm A is weight-separable, then A is weight-sensitive.

Proof. Given any (X, d) and weight function w over X, let C = A(w[X], d, k). Select points
x and y where x ∼C y. Since A is weight-separable, there exists w′ so that x 6∼A(w′[X],d,k) y,
and so A(w′[X], d, k) 6= C. It follows that for any (X, d), |range(A(X, d))| > 1.

K-means is perhaps the most popular clustering objective function, with cost:

k-means(C, w[X], d) =
∑
Ci∈C

∑
x∈Ci

d(x, cnt(Ci))
2 · w(x),

where cnt(Ci) denotes the center of mass of cluster Ci. The k-means objective function finds
a clustering with minimal k-means cost. We show that k-means is weight-separable, and
thus also weight-sensitive.

Theorem 4.2. The k-means objective function is weight-separable.

Proof. Consider any S ⊆ X. Let w be a weight function over X where w(x) = W if x ∈ S,
for large W , and w(x) = 1 otherwise. As shown by [37], the k-means objective function is
equivalent to ∑

Ci∈C

∑
x,y∈Ci

d(x, y)2 · w(x) · w(y)

w(Ci)
.

Let m1 = minx,y∈X d(x, y)2 > 0, m2 = maxx,y∈X d(x, y)2, and n = |X|. Consider any
k-clustering C where all the elements in S belong to distinct clusters. Then we have:

k-means(C, w[X], d) < km2

(
n+

n2

W

)
.

14

On the other hand, given any k-clustering C ′ where at least two elements of S appear in the
same cluster, k-means(C ′, w[X], d) ≥ W 2m1

W+n
. Since

lim
W→∞

k-means(C ′, w[X], d)

k-means(C, w[X], d)
=∞,

k-means separates all the elements in S for large enough W .

Min-sum is another well known objective function and it minimizes the expression:∑
Ci∈C

∑
x,y∈Ci

d(x, y) · w(x) · w(y).

Theorem 4.3. Min-sum is weight-separable.

Proof. Let (X, d) be any data set and 1 < k < |X|. Consider any S ⊆ X where 1 < |S| ≤ k.
Let w be a weight function over X where w(x) = W if x ∈ S, for large W , and w(x) = 1
otherwise. Let m1 = minx,y∈X d(x, y) be the minimum dissimilarity in (X, d), and let m2 =
maxx,y∈X d(x, y) be the maximum dissimilarity in (X, d).

Then the cost of any cluster that includes two elements of S is at least m1W
2, while the

cost of a cluster that includes at most one element of S is less than m2|X|(|X| + W). So
when W is large enough, min-sum selects a partition where no two elements of S appear in
the same cluster.

Several other objective functions similar to k-means are also weight-separable. We show
that k-median and k-medoids are weight sensitive by analysing center-based approaches that
use exemplars from the data as cluster centers (as opposed to any elements in the underlying
space). Given a set T ⊆ X, define C(T) to be the clustering obtained by assigning every
element in X to the closest element (“center”) in T .

Exemplar-based clustering is defined as follows.

Definition 10 (Exemplar-based). An algorithm A is exemplar-based if there exists a func-
tion f : R+ ∪ {0} → R+ ∪ {0} such that for all (w[X], d), A(w[X], d, k) = C(T) where

T = arg min
T⊂X;|T |=k

∑
x∈X

w(x)f(min
y∈T

d(x, y)).

Note that when f is the identity function, we obtain k-median, and when f(x) = x2 we
obtain k-medoids.

Theorem 4.4. Every exemplar-based clustering function is weight-separable.

Proof. Consider any S ⊆ X with |S| ≤ k. For all x ∈ S, set w(x) = W for some large
value W and set all other weights to 1. Recall that a clustering has between 2 and |X| − 1
clusters. Consider any clustering C where some distinct elements x, y ∈ S belong to the same
cluster Ci ∈ C. Since at most one of x or y can be the center of Ci, the cost of C is at least
W ·minx1,x2∈Ci

f(d(x1, x2)). Observe that f(d(x1, x2)) > 0.

15

Consider any clustering C ′ where all the elements in S belong to distinct clusters. If a
cluster contains a unique element x of S, then its cost is constant in W if x is the cluster
center, and at least W · minx1,x2∈X f(d(x1, x2)) if x is not the center of the cluster. This
shows that if W is large enough, then every element of S will be a cluster center, and so
the cost of C ′ would be independent of W . So when W is large, clusterings that separate
elements of S have lower cost than those that merge any points in S.

We have the following corollary.

Corollary 1. The k-median and k-medoids objective functions are weight-separable and
weight-sensitive.

5. Hierarchical Algorithms

Similar to partitional methods, hierarchical algorithms also exhibit a wide range of re-
sponses to weights. We show that Ward’s method [46], a successful linkage-based algorithm,
as well as popular divisive hierarchical methods, are weight sensitive. On the other hand, it
is easy to see that the linkage-based algorithms single-linkage and complete-linkage are both
weight robust, as was observed in [23].

Average-linkage, another popular linkage-based method, exhibits more nuanced behaviour
on weighted data. When a clustering satisfies a reasonable notion of clusterability, average-
linkage detects that clustering irrespective of weights. On the other hand, this algorithm
responds to weights on all other clusterings.

5.1. Average Linkage

Linkage-based algorithms start by placing each element in its own cluster, and proceed
by repeatedly merging the “closest” pair of clusters until the entire hierarchy is constructed.
To identify the closest clusters, these algorithms use a linkage function that maps pairs of
clusters to a real number. Formally, a linkage function is a function ` : {(X1, X2, d, w) |
d,w over X1 ∪X2} → R+.

Average-linkage is one of the most popular linkage-based algorithms (commonly applied
in bioinformatics under the name Unweighted Pair Group Method with Arithmetic Mean).
Recall that w(X) =

∑
x∈X w(x). The average-linkage linkage function is

`AL(X1, X2, d, w) =

∑
x∈X1,y∈X2

d(x, y) · w(x) · w(y)

w(X1) · w(X2)
.

To study how average-linkage responds to weights, we give a relaxation of the notion of
a perfect clustering.

Definition 11 (Nice). A clustering C of (w[X], d) is nice if for all x1, x2, x3 ∈ X where
x1 ∼C x2 and x1 6∼C x3, d(x1, x2) < d(x1, x3).

16

The concept of a “nice” clustering is closely related to the notion of a “strong” or “Apres-
jan” cluster [7, 13, 15] and previously appeared under the name “strict separation” [11].

As for a perfect clustering, being a nice clustering is independent of weights. Note that
all perfect clusterings are nice, but not all nice clusterings are perfect. A hierarchy is nice if
all clusterings that appear in it are nice.

We present a complete characterisation of the way that average-linkage (AL) responds
to weights.

Theorem 5.1. Given (X, d), |range(AL(X, d))| = 1 if and only if (X, d) has a nice hierar-
chy.

Proof. We first show that if a data set has a nice hierarchy, then this is the hierarchy that
average-linkage outputs. Note that the property of being nice is independent of the weight
function. So, the set of nice clusterings of any data set (w[X], d) is invariant to the weight
function w. Lemma 5 shows that, for every (w[X], d), every nice clustering in (w[X], d)
appears in the hierarchy produced by average-linkage.

Let (X, d) be a data set that has a nice hierarchy H. We would like to show that
average-linkage outputs that hierarchy. Let C be the set of all nice clusterings of (X, d). Let
L = {c | ∃C ∈ C such that c ∈ C}. That is, L is the set of all clusters that appear in some
nice clustering of (X, d).

Since H is a nice hierarchy of (X, d), all clusterings that appear in it are nice, and so it
contains all the clusters in L and no additional clusters. In order to satisfy the condition that
every nice clustering of (X, d) appears in the hierarchy, HAL, produced by average-linkage,
HAL must have all clusters in L.

Since a hierarchy is a strictly binary tree, any hierarchy of (X, d) has exactly |X| − 1
inner nodes. In particular, all hierarchies of the same data set have exactly the same number
of inner nodes. This implies that HAL has the same clusters as H, so HAL is equivalent to
H.

Now, let (X, d) be a data set that does not have a nice hierarchy. Then, given any w
over X, there is a clustering C that is not nice that appears in AL(w[X], d). Lemma 6 shows
that if a clustering that is not nice appears in AL(w[X], d), then |range(AL(X, d))| > 1.

Theorem 5.1 follows from the two lemmas below. It is important to note that Lemma 5
below was previously proven by Bryant and Berry [15]. For completion, we include a short
proof utilizing the notation used throughout this paper.

Lemma 5 (Originally proved in [15]). Given any weighted data set (w[X], d), if C is a
nice clustering of (X, d), then C is in the hierarchy produced by average-linkage on (w[X], d).

Proof. Consider a nice clustering C = {C1, . . . , Ck} over (w[X], d). It suffices to show that
for any 1 ≤ i < j ≤ k, X1, X2 ⊆ Ci where X1 ∩ X2 = ∅ and X3 ⊆ Cj, `AL(X1, X2, d, w) <
`AL(X1, X3, d, w). It can be shown that

`AL(X1, X2, d, w) ≤
∑

x1∈X1
w(x1) ·maxx2∈X2 d(x1, x2)

w(X1)

17

and

`AL(X1, X3, d, w) ≥
∑

x1∈X1
w(x1) ·minx3∈X3 d(x1, x3)

w(X1)
.

Since C is nice, it follows that

min
x3∈X3

d(x1, x3) > max
x2∈X2

d(x1, x2)

Thus `AL(X1, X3, d, w) > `AL(X1, X2, d, w), which completes the proof.

Lemma 6. For any data set (X, d) and any weight function w over X, if a clustering that
is not nice appears in AL(w[X], d), then |range(AL(X, d))| > 1.

Proof. Let (X, d) be a data set so that a clustering C that is not nice appears in AL(w[X], d)
for some weight function w over X. We construct w′ so that C 6∈ AL(w′[X], d), which would
show that |range(AL(X, d))| > 1.

Since C is not nice, there exist 1 ≤ i, j ≤ k, i 6= j, and x1, x2 ∈ Ci, x1 6= x2, and x3 ∈ Cj,
so that d(x1, x2) > d(x1, x3).

Now, define weight function w′ as follows: w′(x) = 1 for all x ∈ X \ {x1, x2, x3}, and
w′(x1) = w′(x2) = w′(x3) = W , for some large value W . We argue that when W is sufficiently
large, C is not a clustering in AL(w′[X], d).

By way of contradiction, assume that C is a clustering in AL(w′[X], d) for any setting of
W . Then there is a step in the algorithm where clustersX1 andX2 merge, whereX1, X2 ⊂ Ci,
x1 ∈ X1, and x2 ∈ X2. At this point, there is some cluster X3 ⊆ Cj so that x3 ∈ X3.

We compare `AL(X1, X2, d, w
′) and `AL(X1, X3, d, w

′). First, note that

`AL(X1, X2, d, w
′) =

W 2d(x1, x2) + α1W + α2

W 2 + α3W + α4

for some non-negative real valued αis. Similarly, we have that for some non-negative real-
valued βi:

`AL(X1, X3, d, w
′) =

W 2d(x1, x3) + β1W + β2
W 2 + β3W + β4

Dividing by W 2, we see that `AL(X1, X3, d, w
′) → d(x1, x3) and `AL(X1, X2, d, w

′) →
d(x1, x2) as W → ∞, and so the result holds since d(x1, x3) < d(x1, x2). Therefore average
linkage merges X1 with X3, thus cluster Ci is never formed, and so C is not a clustering in
AL(w′[X], d). If follows that |range(AL(X, d))| > 1,

5.2. Ward’s Method

Ward’s method is a highly effective clustering algorithm ([46]), which, at every step,
merges the clusters that will yield the minimal increase to the sum-of-squares error (the
k-means objective function). Recall that cnt(Ci) denotes the center of mass of cluster Ci.

Then, the linkage function for Ward’s method is

`Ward(X1, X2, d, w) =
w(X1) · w(X2) · d(cnt(X1), cnt(X2))

2

w(X1) + w(X2)
,

where X1 and X2 are disjoint subsets (clusters) of X.

18

Theorem 5.2. Ward’s method is weight sensitive.

Proof. Consider any data set (X, d) and any clustering C output by Ward’s method on (X, d).
Let x, y ∈ X be any distinct points that belong to the same cluster in C. Let w be the weight
function that assigns a large weight W to points x and y, and weight 1 to all other elements.

Since Ward’s method is linkage-based, it starts off by placing every element in its own clus-
ter. We will show that whenW is large enough, it is prohibitively expensive to merge a cluster
that contains x with a cluster that contains point y. Therefore, there is no cluster in the hier-
archy produced by Ward’s method that contains both points x and y, other than the root, and
so C is not a clustering in that hierarchy. This would imply that |range(Ward(X, d))| > 1.

At some point in the execution of Ward’s method, x and y must belong to different
clusters. Let Ci be a cluster that contains x, and cluster Cj a cluster that contains point
y. Then `Ward(Ci, Cj, d, w) → ∞ as W → ∞. On the other hand, whenever at most one
of Ci or Cj contains an element of {x, y}, `Ward(Ci, Cj, d, w) approaches some constant as
W → ∞. This shows that when W is sufficiently large, a cluster containing x is merged
with a cluster containing y only at the last step of the algorithm, when forming the root of
the hierarchy.

5.3. Divisive Algorithms

The class of divisive clustering algorithms is a well-known family of hierarchical algo-
rithms, which construct the hierarchy by using a top-down approach. This family of algo-
rithms includes the popular bisecting k-means algorithm. We show that a class of algorithms
that includes bisecting k-means consists of weight-sensitive methods.

Given a node x in hierarchy (T,M), let C(x) denote the cluster represented by node x.
That is, C(x) = {M(y) | y is a leaf and a descendent of x}.

Informally, a P-Divisive algorithm is a hierarchical clustering algorithm that uses a par-
titional clustering algorithm P to recursively divide the data set into two clusters until only
single elements remain. Formally, a P-divisive algorithm is defined as follows.

Definition 12 (P-Divisive). A hierarchical clustering algorithm A is P-Divisive with respect
to a partitional clustering algorithm P, if for all (X, d), we have A(w[X], d) = (T,M), such
that for all non-leaf nodes x in T with children x1 and x2, P(w[C(x)], d, 2) = {C(x1), C(x2)}.

We obtain bisecting k-means by setting P to k-means. Other natural choices for P include
min-sum, and exemplar-based algorithms such as k-median. As shown above, many of these
partitional algorithms are weight-separable. We show that whenever P is weight-separable,
then P-Divisive is weight-sensitive.

Theorem 5.3. If P is weight-separable then the P-Divisive algorithm is weight-sensitive.

Proof. Given any non-trivial clustering C output by the P-Divisive algorithm, consider any
pair of elements x and y that are placed within the same cluster of C. Since P is weight
separating, there exists a weight function w so that P separates points x and y. Then P-
Divisive splits x and y in the first step, directly below the root, and clustering C is never
formed.

19

6. Heuristic Approaches

We have seen how weights affect various algorithms that optimize different clustering
objectives. Since optimizing a clustering objective is usually NP-hard, heuristics are used in
practice. In this section, we consider several common heuristical clustering approaches, and
show how they respond to weights.

We note that there are many algorithms that aim to find high quality partitions for
popular objective functions. For the k-means objective alone many different algorithms
have been proposed, most of which provide different initializations for Lloyd’s method. For
example, [43] studied a dozen different initializations. There are many other algorithms
based on the k-means objective functions, some of the most notable being k-means++ ([9])
and the Hochbaum-Schmoys initialization ([24]) studied, for instance, by [18]. As such, this
section is not intended as a comprehensive analysis of all available heuristics, but rather
it shows how to analyze such heuristics, and provides a classification for some of the most
popular approaches.

To define the categories in the randomized setting, we need to modify the definition of
range. Given a randomized, partitional clustering algorithm A and a data set (X, d), the
randomized range is

randRange(A(X, d)) = {C | ∀ε < 1 ∃w such that P (A(w[X], d) = C) > 1− ε}.

That is, the randomized range is the set of clusterings that are produced with arbitrarily
high probably, when we can modify weights.

The categories describing an algorithm’s behaviour on weighted data are defined as pre-
viously, but using randomized range.

Definition 13 (Weight Sensitive (Randomized Partitional)). A partitional algorithm A is
weight-sensitive if for all (X, d) and 1 < k < |X|, |randRange(A(X, d, k))| > 1.

Definition 14 (Weight Robust (Randomized Partitional)). A partitional algorithm A is
weight-robust if for all (X, d) and 1 < k < |X|, |randRange(A(X, d, k))| = 1.

Definition 15 (Weight Considering (Randomized Partitional)). A partitional algorithm A
is weight-considering if

• There exist (X, d) and 1 < k < |X| so that |randRange(A(X, d, k))| = 1, and

• There exist (X, d) and 1 < k < |X| so that |randRange(A(X, d, k))| > 1.

6.1. Partitioning Around Medoids (PAM)

In contrast with the Lloyd method and k-means, PAM is a heuristic for exemplar-based
objective functions such as k-medoids, which chooses data points as centers (thus it is not
required to compute centers of mass). As a result, this approach can be applied to arbitrary
data, not only to normed vector spaces.

Partitioning around medoids (PAM) is given an initial set of k centers, T , and changes
T iteratively to find a “better” set of k centers. This is done by swapping out centers for

20

other points in the data set and computing the cost function:
∑

c∈T
∑

x∈X\T,c∼Cx
d(x, c)·w(x).

Each iteration performs a swap only if a better cost is possible, and it stops when no changes
are made [29].

Note that our results in this section hold regardless of how the initial k centers are chosen
from X.

Theorem 6.1. PAM is weight-separable.

Proof. Let T = {x1, . . . , xl} be l points that we want to separate, where 2 ≤ l ≤ k. Let
{m1, . . . ,mk} ⊂ X be k centers chosen by the PAM initialization, and denote by C =
{c1, . . . , ck} the clustering induced by the corresponding centers. Set w(xi) = W,∀xi ∈ T
for some large W . We first note that any optimal clustering C∗ sets the points in T as the
centers. The cost of C∗ is constant as a function of W , while every clustering with a different
set of centers has a cost proportional to W , which can be made arbitrarily high by increasing
W .

Assume, by contradiction, that the algorithm stops at a clustering C that does not sep-
arate all the points in T . Then, there exists a cluster ci ∈ C such that |ci ∩ T | ≥ 2. Thus,
ci contributes a factor of α ·W to the cost, for some α > 0. Further, there exists a cluster
cj ∈ C such that cj ∩ T = ∅. Then the cost of C can be further decreased, by a quantity
proportional to W , by assigning one of the heavy non-medoid from ci to be the center of cj,
which is a contradiction. Thus, the algorithm cannot stop before setting all the heavy points
as cluster centers.

6.2. Llyod method

The Lloyd method is a heuristic commonly used for uncovering clusterings with low k-
means objective cost. The Lloyd algorithm can be combined with different approaches for
seeding the initial centers. In this section, we start by considering the following deterministic
seeding methods.

Definition 16 (Lloyd Method). Given k points (centers) {c1, . . . , ck} in the space, assign
every element of X to its closest center. Then compute the centers of mass of the resulting
clusters by summing the elements in each cluster and dividing by the number of elements in
that partition, and assign every element to its closest new center. Continue until no change
is made in one iteration.

With the Lloyd method, the dissimilarity (or, distance) to the center can be both the
`1-norm or squared.

First, we consider the case when the k initial centers are chosen in a deterministic fashion.
For example, one deterministic seeding approach involves selecting the k-furthest centers (see,
for example, [5]).

Theorem 6.2. Let A represent the Lloyd method with some deterministic seeding pro-
cedure. Consider any data set (X, d) and 1 < k < |X|. If there exists a clustering
C ∈ range(A(X, d, k)) that is not nice, then |range(A(X, d, k))| > 1.

21

Proof. For any seeding procedure, since C is in the range of A(X, d), there exists a weight
function w so that C = A(w[X], d).

Since C is not nice, there exist points x1, x2, x3 ∈ X where x1 ∼C x2, x1 6∼C x3, but
d(x1, x3) < d(x1, x2). Construct weight function w′ such that w′(x) = 1 for all x ∈ X \
{x2, x3}, and w′(x2) = w′(x3) = W , for some constant W .

If for some value of W , A(w′[X], d, k) 6= C, then we’re done. Otherwise, A(w′[X], d, k) =
C for all values of W . But if W is large enough, the center of mass of the cluster containing
x1 and x2 is arbitrarily close to x2, and the center of mass of the cluster containing x3 is
arbitrarily close to x3. But since d(x1, x3) < d(x1, x2), the Lloyd method would assign x1
and x3 to the same cluster. Thus, when W is sufficiently large, A(w′[X], d, k) 6= C.

We also show that for a deterministic, weight-independent initialization, if the Lloyd
method outputs a nice clustering C, then this algorithm is robust to weights on that data.

Theorem 6.3. Let A represent the Lloyd method with some weight-independent determin-
istic seeding procedure. Given (X, d), if there exists a nice clustering in the range(A(X, d)),
then A is weight robust on (X, d).

Proof. Since the initialization is weight-independent, A will find the same initial centers
on any weight function. Given a nice clustering, the Lloyd method does not modify the
clustering. If the seeding method were not weight-independent, it may seed in a way that
may prevent the Lloyd method from finding C for some weight function.

Corollary 2. Let A represent the Lloyd method initialized with furthest centroids. For any
(X, d) and 1 < k < |X|, |range(A(X, d, k))| = 1 if and only if there exists a nice k-clustering
of (X, d).

6.2.1. k-means++

The k-means++ algorithm, introduced by Arthur and Vassilvitskii ([9]) is the Lloyd
algorithm with a randomized initialization method that aims to place the initial centers
far apart from each other. This algorithm has been demonstrated to perform very well in
practice.

Let D(x) denote the shortest dissimilarity from a point x to the closest center already
chosen. The k-means++ algorithm chooses the initial center uniformly at random, and then

x is selected as the next center with probability D(x)2w(x)∑
y D(y)2w(y)

until k centers have been chosen.

Theorem 6.4. k-means++ is weight-separable.

Proof. If any k points {x1, . . . , xk} are assigned sufficiently high weight W , then the first
center will be one of these points with arbitrarily high probability. The next center will
also be selected with arbitrarily high probability if W is large enough, since for all y 6∈
{x1, . . . , xk}, the probability of selecting y can be made arbitrarily small when W is large
enough.

The same argument works for showing that the Lloyd method is weight-separable when
the initial centers are selected uniformly at random (Randomized Lloyd). An expanded
classification of clustering algorithms that includes heuristics is given in Table 1 below.

22

Partitional Hierarchical Heuristics

Weight k-means, k-medoids Ward’s method Randomized Lloyd,
Sensitive k-median, Min-sum Bisecting k-means PAM, k-means++
Weight Lloyd with
Considering Ratio-cut Average-linkage Furthest centroids
Weight Min-diameter Single-linkage
Robust k-center Complete-linkage

Table 2: A classification of clustering algorithms based on their response to weighted data expanded to
include several popular heuristic methods.

7. Discussion and Future Work

7.1. Applying The Properties in Practice

We now delve deeper into how the properties presented in this paper can be applied to
select clustering methods in practice. Application of the properties to the user’s dilemma
reduces to the following simple question: “Should element duplicates impact the clustering
outcome?” It may be helpful to consider extreme cases, with elements replicated hundreds
or thousands of times. This can make the answer clearer than if one considers duplicating
elements a small number of times.

Clustering typically takes place in the traditional unweighted framework, rather than
the weighed setting. As discussed in Section 3, our properties apply both in the weighted
and standard, unweighted models. Recall that to convert a method from the unweighted
to the weighted setting, assign each element a weight based on the number of times that it
occurs. That is, a non-replicated element is given a weight of 1, while elements with multiple
occurrences are assigned a weight corresponding to their number of occurrences.

While the weighted properties directly map to precisely replicated elements, the concept
extends more broadly. Intuitively, the weighted categories capture how algorithms treat
similar items and handle dense regions. Algorithms often treat points in close proximity in
a similar manner to perfect replicates. As such, when applying these properties in practice,
it is worth considering not only how perfect replicates should be handled with respect to
weight sensitivity, but also whether near-duplicates, or the presence of a large number of
highly similar items, should impact the clustering.

If the user believes that high sensitivity to element duplicates fits the needs of the appli-
cation, then a weight-sensitive method should be used. On the other hand, low sensitivity to
weight should lead the user to consider either weight robust or weight considering techniques.
In practice, weight considering methods tend to sufficiently prioritize geometry over density
(or, weight) to justify their use when the user does not wish duplicates to have substantial
impact on the resultant clustering.

We now examine several examples, demonstrating how clustering methods can be selected
for these applications based on the desired type of weight sensitivity.

23

• Phylogenetic analysis. Phylogeny aims to understand the evolutionary relationship
between organisms. It has been applied to a wide range of organisms, from mammals
to the evolution of the HIV virus. Given the focus on evolutionary relationships, phy-
logenetic analysis often takes place in the hierarchical clustering setting. However, as
discussed in the introduction, choosing hierarchical over partitional techniques is itself
not sufficient, as clustering techniques can be converted between these two settings.

The ground truth for a phylogenetic application is independent of element duplicates.
That is, whether a sample contains one instance of each element, or many replicates of
some of the elements, has no impact on the true evolutionary relationship between the
data points. As such, sensitivity to weight is not desirable for phylogentic methods.

Indeed, phylogentic analysis relies heavily on average-linkage, referred to as UPGMA
in the phylogentic literature [41]. This pattern persists despite the overwhelming pop-
ularity of k-means and related techniques.

• Collaborative filtering. Collaborative filtering seeks to provide a user with item
recommendations (such as songs, TV shows, or physical products), based on their
own past purchasing behaviour and/or rankings and, critically, those of others [35, 44].
Clustering can be applied to collaborative filtering in order to identify users with similar
shopping behaviour, and as such recommend users products prevalent in their cluster.

What kind of weight response makes sense for a collaborative filtering application of
cluster analysis? If a single shopper has a particular shopping pattern, that shouldn’t
have much impact on the recommendations made to others. On the other hand, many
shoppers exhibiting the same, or similar, behaviour is an important factor to consider.
As such, weight sensitive methods are appropriate for this application. Other aspects,
such as an algorithm’s ability to handle sparse data, should also be considered when
selecting algorithms for collaborative filtering.

• Market segmentation. Market segmentation looks to identify similar groups of
customers or “personas.” If we consider a classical variation, with a large number
of customers with similar purchasing power, then a weight sensitive approach may
be appropriate in order to identify common customer types. Indeed, an analysis of
clustering methods applied to market segmentation reveals that Ward’s method was the
most frequently applied hierarchical technique, while the classical k-means algorithm
was most popular amongst partitional methods, both of which are weight sensitive [21].

On the other hand, in applications such a fundraising, where potential donors may
bring radically different value to the organization, it may be essential that a small
cluster of high value donors not be overshadowed by dense regions. Weight sensitive
methods, such as k-means, run the risk of occluding a low-weight cluster, treating
it as an outlier in favour of partitioning dense regions. As such, weight considering
methods could be explored. This example highlights that even within the same broad
application, it is important to consider the specific needs of a given use case.

24

The applications above illustrate how the properties introduced here apply to common
applications. Viewing the user’s dilemma from a weighted properties perspective often ex-
plains common trends in the application of cluster analysis in specific domains, such as the
popularity of average-linkage in phylogenetic analysis, and dominance of Ward’s method and
k-means in market segmentation.

However, clustering applications are highly diverse, and may not fit neatly into an overar-
ching, common application. To further illustrate the utility of our approach, we mention an
application of cluster analysis where the weighted approach was used to select an algorithm
for clustering the echolocation clicks of toothed whale species [39], in a project involving one
of the co-authors of this paper. The aim of the work was to separate the data into clusters
corresponding to distinct whale species, where shortage of labeled data made cluster analysis
a promising alternative to supervised techniques. To select a clustering method, recommen-
dations made earlier in this section were utilized, considering whether data duplicates should
impact the solution. Since the true clusters, corresponding to whale species, are independent
of the number of occurrences of any echolocation click, low weight sensitivity was desired,
and average-linkage was utilized.

We make one final recommendation, which applies when there is insufficient information
to address the simple question regarding desired behaviour on data duplicates. One of the
primary points of failure when selecting clustering techniques is reliance on a single technique.
For example, a researcher may choose to use Lloyd’s method or a related algorithm as a single
clustering approach. When it fails, the researcher may conclude that clustering is not an
appropriate data analysis method for the application at hand. A key takeaway from the
analysis presented in the current paper is the partition of clustering techniques into three
distinct categories: Weight robust, sensitive, and considering. In the absence of additional
information, techniques from distinct weight categories should be explored.

7.2. Relation to other considerations relevant to the user’s dilemma

The main contribution of this work is a simple property-based solution that assists users
in the selection of a clustering algorithm suited to their application. The strength of this
solution is that it both relies on solid theory and is applicable in practice.

Many other properties have been previously proposed in order to solve the user’s dilemma.
These include many crisp, simple properties [23, 17, 5]. However, most such properties from
previous work have a major shortcomings: They elevate single-linkage, an algorithm that
fails for many applications. Several authors have demonstrated single-linkage to be the only
method to satisfy sets of desirable properties [27, 17, 19].

Meanwhile, the literature offers no simple, usable properties that showcase the strengths
of highly useful methods, such as k-means and related techniques. This presents a major
theory-practice gap - the theory suggests that single-linkage is the algorithm of choice, while
practice shows that methods such as k-means are more often appropriate.

Less drastic, but also important, is the fact that techniques like average-linkage are often
preferred to single-linkage in practice (this it the case, for example, in Phylogeny, where
average-linkage goes under the name of UPGMA [41]), and yet the property-based literature
provides little to no insight as to when to apply average-linkage over single-linkage.

25

The properties proposed here offer clear, direct guidance on how to select amongst clus-
tering algorithms, in a manner that clearly demonstrates when some popular approaches are
more appropriate than others. This is a major step forward for the property-based approach
to the user’s dilemma.

One of the main advantages of the current approach is that it is theoretically founded.
This offers a level of clarity on fundamental differences amongst clustering techniques that
was not previously available, and as such stands to serve as a foundation for further fruitful
exploration into core differences between clustering paradigms. Our approach also stands in
stark contrast to less rigorous guidance that relies on considerations such as the shape of the
data.

It is important to stress that while the weight-based classification is a major step forward
in the user’s dilemma, it is not intended to offer a complete solution. In order to have a more
comprehensive solution to the user’s dilemma we need additional properties that identify
other essential differences amongst clustering techniques. The ultimate goal of the property-
based approach to the user’s dilemma is to have a small set of complementary properties
that together aid in the selection of clustering techniques for a wide range of applications.

Considerations outside of the property-based approach can be combined with the method-
ology proposed here to give the user further guidance on how to select a suitable clustering
method for a given problem. Such considerations include, for example, issues of data pre-
sentation and identifying the number of clusters (see Jain [26] for a discussion). These
considerations are compatible with the weight-based properties proposed here, and can be
used in conjunction with them. In particular, representational issues come into considera-
tion before selecting a clustering method, while the number of clusters can be found after
identifying a suitable clustering techniques using the methodology proposed here.

The following summarizes the advantages of our approach:

• The properties we propose are theoretically founded. Clustering algorithms provably
fall into one of three categories: Weight-robust, weight-considering, or weight-sensitive.
This offers a level of rigor and accuracy that is often lacking from recommendations to
the user’s dilemma.

• Real world data is often difficult to understand or visualize, particular when it is large
and high dimensional. Users often need to utilize cluster analysis without insight into
the shape of the data or threshold at which data should be marked as noise. Our
approach can be applied without any special insight into the shape or structure of the
data, but rather focuses on the needs of the application.

• Unlike prior property-based approaches to the user’s dilemma, the weight-based prop-
erties proposed here clearly elucidate differences between clustering methods without
elevating any method over another. By contrast, prior properties in this line of research
tend to highlight the advantages of single-linkage, while failing to elucidate the benefits
of other popular techniques.

• Our approach is complementary to and can be used in conjunction with other important

26

considerations for identifying a useful clustering, such as representational considera-
tions and identifying the right number of clusters [26].

7.3. Comparison to other clustering paradigms

Due to the high applicability of clustering, there are numerous variations of this data
mining method. Our analysis focuses on two of the most popular clustering frameworks,
a partitional setting where the number of clusters (k) is provided, and the hierarchical
clustering model. The weighted framework presented here is not limited to the frameworks
on which we focus, and we discuss how it applies to several other paradigms.

7.3.1. Density-based approaches

Density based clustering methods, such as, for instance the popular DBSCAN [22], focus
specially on the identification of dense regions. A variety of density based approaches have
been proposed (see a survey by Bhattacharjee and Mitra [14]). Density based clustering
methods extract compact regions in the data space from noise, identifying clusters as areas
of higher density than the remainder of the data [14].

There is an important distinction between the methodology proposed here and the
density-based view of clustering. A critical aspect of the weighted properties framework
is to choose a clustering technique based on how sparse regions should be treated. In stark
contrast to eliminating noise and outliers, some applications, such as phylogeny, call for
methods that prioritize the identification of clusters formed from a small number of ele-
ments.

On the other hand, when it is determined that for a given application it is desirable that
noise and outliers not have excessive influence over the resultant clustering, then density
based approaches can offer additional viable options. This is particularly relevant when
users have sufficient insight into the nature of the data in order to effectively set parameters
required by many density-based algorithms.

7.3.2. Validity criteria and clusterability measures

In addition to clustering algorithms, other clustering tools are available throughout the
cluster analysis process. The clustering pipeline [6] begins with clusterability evaluation [3],
where notions of clusterability can determine whether data possesses inherent cluster struc-
ture. Then clustering algorithms are applied, followed by validity indices[8] (also known
as “clustering quality measures” [4]), which access whether a successful clustering has been
discovered by any given clustering algorithm. Validity indices can further be internal (deter-
mining the quality of a clustering based on its structure) or external (comparing a clustering
to a ground truth, when such is available). While cluster analysis is flexible and is often
applied without all of these steps, clusterability analysis and validity indices offer additional
tools to improve the chances of identifying useful partitions.

The techniques developed in this work apply not only to algorithms, but also to cluster-
ability measures and validity indices, particularly internal validity indices. If, for instance, a
user determines that their application calls for valuing data present in sparse regions (as op-
posed to treating it as noise or outliers), it would be important not only to select a clustering

27

algorithm that exhibits such behaviour, but also to ensure that any clusterability method or
validity index that is applied in the analysis exhibits the corresponding treatment of weights.

If any component of the clustering pipeline is selected without regard for how weights
should be treated for the given application, the analysis may yield misleading results. A
clustering that is better suited for the application at hand may be discarded in favour of one
with higher quality according to a validity index that treats weights differently. Similarly, a
poorly chosen clusterability measure may deem data unclusterable when in fact it possesses
cluster structure when accounting for the desired treatment of sparse regions (for example, a
data set may only be clusterable if small clusters are permissible). While the current paper
focuses on partitional and hierarchical clustering algorithms, categorization of clusterability
and validity indices based on their weight sensitivity is left for future work. Future work
may also involve the development of novel validity indices and notions of clusterability with
varied behaviour with respect to how they treat weighted data.

7.4. Conclusions

A primary limitation in the application of properties to the user’s dilemma is a theory-
practice disconnect, whereby properties that formally distinguish between clustering tech-
niques are often not relevant to the practitioner. A central contribution of this work is
the introduction of properties that simultaneously allow for formal differentiation between
clustering techniques, while being helpful in practice.

We studied the behaviour of clustering techniques in a weighted framework, presenting
three fundamental categories that describe how algorithms respond to weights and classifying
several well-known techniques according to these categories. Our results are summarized in
Table 1. We note that all of our results readily translate to the standard setting, by mapping
each point with integer weight to the same number of unweighted duplicates. We discussed
how the weighted clustering categories can be applied to help identify a suitable clustering
algorithm in practice, with illustrations from specific clustering applications, and discussed
how the weighted clustering approach developed here relates to other clustering constructs.

This paper presents a significant step forward in the property-based approach for selecting
clustering algorithms. Unlike previous properties, which focused on advantages of linkage-
based algorithms, these properties show when applications call for popular center-based
approaches, such as k-means. Furthermore, the simplicity of these properties makes them
widely applicable, requiring only that the user decide whether duplicating elements should
impact the output of the algorithm. We hope that this work will trigger additional research
on formal properties that are applicable to solving the user’s dilemma in the practical arena
and lead to the study of the weighted behaviour of other clustering constructs.

References

[1] M. Ackerman and S. Ben-David. Discerning linkage-based algorithms among hierarchi-
cal clustering methods. In IJCAI, 2011.

[2] M. Ackerman, S. Ben-David, and D. Loker. Characterization of linkage-based clustering.
In COLT, 2010.

28

[3] M. Ackerman and S. Ben-David. Clusterability: A theoretical study. Artificial intelli-
gence and statistics. 2009.

[4] M. Ackerman and S. Ben-David. Measures of clustering quality: A working set of axioms
for clustering. Advances in neural information processing systems 21 (2008): 121-128.

[5] M. Ackerman, S. Ben-David, and D. Loker. Towards property-based classification of
clustering paradigms In NIPS, 2010.

[6] Andreas Adolfsson, M. Ackerman, and Naomi C. Brownstein. To cluster, or not to
cluster: An analysis of clusterability methods. Pattern Recognition 88 (2019): 13-26

[7] Apresjan, Ju D. An algorithm for constructing clusters from a distance matrix, Mashin-
nyi perevod: prikladnaja lingvistika: 9 (1966): 3-18

[8] Arbelaitz, Olatz, et al. An extensive comparative study of cluster validity indices.
Pattern Recognition 46.1 (2013): 243-256.

[9] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In
SODA, 2007.

[10] Balcan, Maria-Florina, Nika Haghtalab, and Colin White. k-center Clustering under
Perturbation Resilience. ACM Transactions on Algorithms (TALG) 16.2 (2020): 1-39.

[11] M. F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering via
similarity functions. In STOC, 2008.

[12] Ben-David, Shai. Clustering – What both theoreticians and practitioners are doing
wrong. Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. No. 1.
2018.

[13] Bandelt, H-J., and Andreas WM Dress. Weak hierarchies associated with similarity mea-
sures—an additive clustering technique. Bulletin of mathematical biology 51.1 (1989):
133-166.

[14] Bhattacharjee, P., and P. Mitra. A survey of density based clustering algorithms. Fron-
tiers of Computer Science 15.1 (2020): 1-27.

[15] Bryant, D., and V. Berry. A structured family of clustering and tree construction
methods. Advances in Applied Mathematics 27.4 (2001): 705-732.

[16] Cohen-Addad, Vincent, Varun Kanade, and Frederik Mallmann-Trenn. Clustering Re-
demption – Beyond the Impossibility of Kleinberg’s Axioms. Advances in Neural Infor-
mation Processing Systems. 2018.

[17] R. Bosagh-Zadeh and S. Ben-David. A uniqueness theorem for clustering. In UAI, 2009.

29

[18] Sébastien Bubeck, Marina Meila, and Ulrike von Luxburg. How the initialization affects
the stability of the k-means algorithm. arXiv preprint arXiv:0907.5494, 2009.

[19] Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of
hierarchical clustering methods. The Journal of Machine Learning Research, 11:1425–
1470, 2010.

[20] Cohen-Addad, Vincent, Varun Kanade, and Frederik Mallmann-Trenn. Clustering
Redemption-Beyond the Impossibility of Kleinberg’s Axioms. NeurIPS, 2018.

[21] Sara Dolnicar. A Review of Unquestioned Standards in Using Cluster Analysis for Data-
driven Market Segmentation. Conference Proceedings of the Australian and New Zealand
Marketing Academy Conference 2002 (ANZMAC), Deakin University, Melbourne, 2-4.
December 2002.

[22] Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In KDD, vol.
96, no. 34, pp. 226-231. 1996.

[23] L. Fisher and J. Van Ness. Admissible clustering procedures. Biometrika, 58:91–104,
1971.

[24] Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center
problem. Mathematics of operations research, 10(2):180–184, 1985.

[25] Lawrence Hubert and James Schultz. Hierarchical clustering and the concept of space
distortion. British Journal of Mathematical and Statistical Psychology, 28(2):121–133,
1975.

[26] Jain, Anil K. Data clustering: 50 years beyond K-means. Pattern recognition letters,
31.8 (2010): 651-666.

[27] Nicholas Jardine and Robin Sibson. The construction of hierarchic and non-hierarchic
classifications. The Computer Journal, 11(2):177–184, 1968.

[28] Jiang, Heinrich, Jennifer Jang, and Ofir Nachum. Robustness guarantees for density
clustering. The 22nd International Conference on Artificial Intelligence and Statistics.
PMLR, 2019.

[29] L. Kaufman and P. J. Rousseeuw. Partitioning Around Medoids (Program PAM), pages
68–125. John Wiley & Sons, Inc., 2008.

[30] J. Kleinberg. An impossibility theorem for clustering. Proceedings of International
Conferences on Advances in Neural Information Processing Systems, pages 463–470,
2003.

30

[31] K lopotek, Robert A., and Mieczys law A. K lopotek. On Probabilistic k-Richness of the
k-Means Algorithms. International Conference on Machine Learning, Optimization,
and Data Science. Springer, Cham, 2019.

[32] K lopotek, Mieczys law Alojzy and Robert Albert K lopotek. Clustering algorithm con-
sistency in fixed dimensional spaces. International Symposium on Methodologies for
Intelligent Systems. Springer, Cham, 2020.

[33] K lopotek, Mieczys law, and Robert K lopotek. In-The-Limit Clustering Axioms. Inter-
national Conference on Artificial Intelligence and Soft Computing. Springer, Cham,
2020.

[34] Meilă, Marina. Good (K-means) clusterings are unique (up to small perturbations).
Journal of Multivariate Analysis 173 (2019): 1-17.

[35] Arnd Kohrs-Bernard Merialdo. Clustering for collaborative filtering applications. In-
telligent Image Processing, Data Analysis & Information Retrieval 3 (1999): 199.

[36] Moore, Jarrod, and Margareta Ackerman. Foundations of perturbation robust cluster-
ing. 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.

[37] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of Lloyd-type
methods for the k-means problem. In FOCS, 2006.

[38] Peng, Pan, and Yuichi Yoshida. Average sensitivity of spectral clustering. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery Data
Mining. 2020.

[39] Yun Trinh, Scott Lindeneau, Margareta Ackerman, Simone Baumann-Pickering, and
Marie Roch. Unsupervised clustering of toothed whale species from echolocation clicks.
In The Journal of the Acoustical Society of America 140, 3302 (2016).

[40] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. Journal of the
ACM (JACM), 23(3):555–565, 1976.

[41] Peter HA Sneath and R Robert Sokal Numerical taxonomy. The principles and practice
of numerical classification. 1973.

[42] D. Steinley. K-means clustering: a half-century synthesis. In British Journal of Math-
ematical and Statistical Psychology, 59(1):1–34, 2006.

[43] Douglas Steinley and Michael J Brusco. Initializing k-means batch clustering: a critical
evaluation of several techniques. In Journal of Classification, 24(1):99–121, 2007.

[44] Lyle H. Ungar and Dean P. Foster. Clustering methods for collaborative filtering. In
AAAI workshop on recommendation systems. Vol. 1. 1998.

31

[45] U. Von Luxburg. A tutorial on spectral clustering. In J. Stat. Comput., 17(4):395–416,
2007.

[46] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. In Journal of
the American statistical association, 58(301):236–244, 1963.

[47] Wei, Jia-heng. Two examples to show how k-means reaches richness and consistency.
DEStech Transactions on Computer Science and Engineering (2017).

[48] W. E. Wright. A formalization of cluster analysis. In J. Pattern Recognition, 5(3):273–
282, 1973.

32

