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ABSTRACT
Clustering is an essential data mining tool that aims to dis-
cover inherent cluster structure in data. For most applications,
applying clustering is only appropriate when cluster structure
is present. As such, the study of clusterability, which evaluates
whether data possesses such structure, is an integral part of
cluster analysis. However, methods for evaluating clusterabil-
ity vary radically, making it challenging to select a suitable
measure. In this paper, we perform an extensive comparison
of measures of clusterability and provide guidelines that clus-
tering users can utilize to select suitable measures for their
applications.
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1 INTRODUCTION
Clustering is an ubiquitous data analysis tool applied in virtu-
ally all disciplines, spanning applications as diverse as bioin-
formatics, marketing, and image segmentation. Its wide utility
is perhaps unsurprising, as its intuitive aim - to divide data
into groups of similar items - applies at various stages of the
data analysis process, from exploratory data analysis to col-
laborative �ltering.

Despite its popularity, we have barely scratched the surface
on many fundamental questions about clustering. Issues as
basic as the de�nition of clustering are being raised [2, 41]. Dif-
ferences between clustering algorithms are studied to decide
which should be used under di�erent circumstances [4–7]. Yet,
a more fundamental issue than algorithm selection is when
clustering should – or should not – be applied. For most appli-
cations, clustering is only appropriate when cluster structure
is present in the data. Otherwise, the results of any clustering
technique become arbitrary and potentially misleading.

For concreteness, consider a dataset randomly generated
from a single Gaussian distribution. Because the data contains
only one cluster, further sub-division would be arti�cial. Most
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clustering algorithms (e.g. k-means with k ≥ 2) would �nd
multiple clusters in the data, even though no multi-cluster
structure is present.

As such, the application of these data mining tools rely on
the presence of inherent structure, rendering notions of cluster-
ability, which aim to quantify the degree of cluster structure,
integral to cluster analysis. Clusterability analysis should pre-
cede the application of clustering algorithms, as the success
of any clustering algorithm depends on the presence of under-
lying cluster structure.

To see how clusterability �ts within the clustering process,
consider the clustering pipeline depicted in Figure 1.1 �e pro-
cess begins with data preprocessing, o�en involving feature
selection or extraction. Next, clusterability analysis deter-
mines whether the data possesses inherent cluster structure.
If the data does not possess su�cient cluster structure to be
meaningfully partitioned, then clustering may not be suitable
for the given data, or the data may need to be reprocessed. On
the other hand, if the data is found to be clusterable, a suitable
clustering algorithm may be selected or developed.2 A�er the
algorithm is executed, the solution is validated by applying
clustering quality measures [2, 47], which may result in the
selection of an alternate clustering algorithm if a su�ciently
high quality clustering has not been found.

Notions of clusterability have been proposed across the com-
puter science and statistics literature, summarized in Section 2.
Not unlike clustering algorithms [7], notions of clusterability
disagree with each other in surprising ways. A formal analysis
by Ackerman and Ben-David [3] reveals that many notions of
clusterability are pairwise distinct - despite the fact that they
all a�empt to evaluate the same characteristic!

�e plethora of clusterability methods presents a dilemma:
how should one select a clusterability measure suited to their
data?3 Ben-David [17] approaches the problem from a theo-
retical standpoint, o�ering several properties that notions of
clusterability should satisfy. In particular, he argues that clus-
terability notions need to be both computationally e�cient
and e�ective. (See section 2.1 for more details.)

�e e�ectiveness requirement is complicated by the in-
herent ambiguity of cluster analysis. As with clustering al-
gorithms, the needs of the application at hand may dictate
whether the given data is clusterable. For example, whether we

1A similar pipeline is presented in the famous survey of clustering algorithms
by Xu and Wunsch [57], sans the second step. Figure 1 shows how clusterability
�ts within the clustering process.
2Note that multiple methods should be considered at this step, because di�erent
algorithms are apt at identifying di�erent types of cluster structures [7, 9].
3�e original “user’s dilemma” refers to the problem of selecting a clustering
algorithm for a given task. Selecting a notion of clusterability is another dilemma
that the clustering user faces and that we address in the current work.



Figure 1: Clustering pipeline. �is �gure shows the feedback pathways in cluster analysis and the role of clusterabil-
ity in this process.

Figure 2: A dataset with ambiguous cluster structure.
�e outliers can either be ignored or represent a small
cluster. Whether or not this data is considered cluster-
able depends on the needs of the given application.

allow small clusters can change how we evaluate the cluster-
ability of the data in Figure 2; If small clusters are appropriate
for the given application, then the data would be clusterable,
whereas otherwise it would be unclusterable.4 Such consider-
ations make room for multiple legitimate clusterability mea-
sures, and create the need for guidelines that would help a
user determine which notion to choose for their application.

In this paper, we take a practical approach to clusterability,
and analyze notions of clusterability for their e�ectiveness
on a variety of datasets. �is allows us not only to identify
e�ective notions, but also to discover important di�erences
amongst them that can enable a clustering user to make in-
formed decisions when selecting a clusterability technique for
their application.

We now outline the paper. Section 2 presents an overview
of clusterability measures, starting with several properties that
we use to select measures for our analysis. We then present
our simulations, allowing us to discern between approaches to
clusterability and determine which may be more appropriate
under di�erent circumstances. Next, we show our analysis
of these measures of clusterability on real data. We conclude
with a summary of our �ndings and recommendations.

2 MEASURES OF CLUSTERABILITY
Many approaches for measuring clusterability have been pro-
posed in the literature. In the section, we survey the most
promising measures, for which we perform an extensive analy-
sis in Section 3. Before delving into the details of the measures,
we formalize clusterability and propose several requirements.

4For example, distant elements are typically viewed as signi�cant when cluster-
ing Phylogenetic data, whereas outliers are o�en best ignored when clustering
is applied to market segmentation. See [5] for a detailed discussion.

2.1 Requirements of clusterability
measures

One of the most challenging aspects of cluster analysis is
that it is ill-de�ned [2]. In particular, we do not have a for-
mal de�nition of clusterability (or even a formal de�nition
of clustering5). Recently, Ben-David [17] began tackling the
challenge of formalizing clusterability by proposing several
interesting properties. In this section, we aim to distill several
properties that will help si� through the plethora of cluster-
ability measures in order to identify those that are most likely
to be useful in practice. (Two of our properties, the �rst and
third, are related to Ben-David’s requirements.)

A measure of clusterability is a function that takes in a
dataset, and outputs a number that represents its degree of
inherent cluster structure.6 Naturally, this concept is insu�-
ciently detailed, as a function (e.g. a constant function that
declares all datasets to be clusterable) can easily contradict
our intuition about how a measure of clusterability should
behave. An important question remains: What additional
requirements are needed for a clusterablility measure to be
meaningful? We propose several properties on which we rely
to select clusterability measures for our analysis in Section 3:
• E�ciency: For practical utility, a measure of clusterability

should be e�ciently computed.7
• Algorithm independence: �e clusterability measure should

not be based on a speci�c clustering algorithm or objective
function.

• E�ectiveness: �e measure of clusterability should be highly
accurate in identifying data as clusterable or unclusterable.8

�e �rst, and simplest, requirement asks that measures be
e�cient in practice. �ey should certainly be computable in
polynomial time, but, to have real practical utility, they should
run in reasonable time on fairly large datasets. Our second
requirement is concerned with the role of clusterability in
the clustering pipeline in Figure 1, discussed in the introduc-
tion. Notions of clusterability that are based on a speci�c
algorithm ask a di�erent question than the one with which

5Many di�erent axioms and properties have been proposed, see, for example [2,
7, 41]. However, we do not yet have a formal de�nition of clustering, clustering
functions, or clusterability.
6�e output could be a real value, a binary indicator (“clusterable” or ”unclus-
terable”), or a probability based measure, such as a p-value (testing the null hy-
pothesis that the dataset is “unclusterable” against the “clusterable” alternative.)
7�is requirement relates to Ben-David’s [17] third requirement.
8�is property is related to Ben-David’s [17] �rst requirement. As discussed
in Section 1, the inherent ambiguity of clustering necessitates some �exibility
on what it means to be “clusterable.” Yet, there exist clear examples (such as a
single Guassian (unclusterable) or two well-separated Guassians (clusterable))
that let us evaluate the e�ectiveness of a clusterability notion.
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we are concerned here; While we ask “Is this data cluster-
able?”, algorithm-speci�c notions aim to discover whether the
data can be clustered using a particular clustering technique.
Furthermore, since di�erent clustering algorithms are apt at
identifying distinct types of cluster structure [8, 9], centering
a measure of clusterability on a speci�c algorithm restricts
a notion of clusterability from identifying structure that the
underlying algorithm cannot capture.

Finally, the third and most challenging requirement is the
focus of our work. We �rst collect a body of existing measures
and propose additional measures that satisfy the �rst two
requirements. Next, we empirically compare the performance
of these methods on a large number of real and simulated
datasets. Our data includes many examples that leave no room
for ambiguity, allowing us to determine which clusterability
measures are e�ective. Di�erences in their behavior on more
ambiguous data allow us to identify guidelines that can be
used to help clustering practitioners select suitable notions of
clusterability for their tasks.

2.2 E�ective approaches to clusterability
evaluation

Our survey of clusterability notions suggests that a large, prac-
tical class of clusterability notions rely on one or more of the
following: dimensionality reduction and statistical tests of
multimodality, which indicate whether or not multiple clus-
ters are present in the data. �e main insight these approaches
is the observation that clusterability can be inferred from a
one-dimensional view of the data. Brie�y, these methods look
for separations in the data that would indicate that the pres-
ence of separate clusters. In the following two subsections,
we brie�y review data reduction methods and multimodality
tests, before delving into clusterability methods.

2.2.1 Data reduction methods. Contemporary datasets of-
ten contain a large number of features, which may greatly
outnumber the observations. Due to the computational and
theoretical challenges associated with high dimensional data, a
popular solution is to reduce the dimension while maintaining
the structure of the original data. �e reduced dataset informs
the clusterability of the original data. �is section discusses
techniques for reducing data to one dimension.

One of the most famous data reduction methods is principal
component analysis (PCA) [39], which projects the data onto
independent dimensions that explain the original variance.
�ere are natural connections between PCA and clustering.
In fact, the principal components (PC) correspond to the k-
means cluster membership indicators [21, 58]. PCA has been
recommended to visually inspect for grouping structure [1].
While multiple components are o�en retained, the �rst PC, by
de�nition, explains most of the variation in the data [37, 42].
Importantly, PCA is less prone than other data-reductionmeth-
ods to the curse of dimensionality [37]. Despite its bene�ts,
PCA is not well suited to non-linear structures [37], for which
principal curves [33, 55], which produce a non-linear transfor-
mation of the data, may be more appropriate.

�e set of dissmilarities between each pair of points in a
dataset forms an alternative one-dimensional summary. Dis-
similarities serve as inputs of many clustering techniques, can
be calculated for any dataset, and have been shown to preserve
structural features, such as correlation [28]. Euclidian distance
is the most common metric, though others are possible, such
as the Pearson correlation. Yet, distances are sensitive to the
curse of dimensionality, potentially leading to misleading re-
sults for data with a large number of features. Additionally,
the use of pairwise distances increases the sample size of the
summary to nearly the square of the original size; this may be
impractical for datasets with a large number of observations.

2.2.2 Multimodality tests. Intuitively, if a dataset contains
multiple clusters, then there should be some separation be-
tween the clusters. For example, a histogram of the set of
pairwise distances would likely show a group of small dis-
tances, representing those within clusters, and a group of
large between-cluster distances. By contrast, homogenous
data would not show such a separation. One could use a statis-
tical test to determine if the set of distances for a given dataset
has multiple modes, indicating that there are indeed multiple
clusters. Similarly, statistical tests on data reduced by other
methods help detect cluster structure. Multimodality tests are
employed for other clustering purposes, such cluster spli�ing,
merging, and validation [34, 40, 45, 52].

Numerous statistical tests for multimodality have been de-
veloped [44]. Each test provides a p-value, which is the proba-
bility of observing the given input or a more extremely multi-
modal input assuming that the data is generated from a uni-
modal distribution. If only a single mode is present, then the
p-value should be large, indicating that the underlying data is
deemed unclusterable. On the other hand, smallp-values make
us question the original assumption of unimodality and in-
stead conclude that multiple modes (and multiple clusters) are
present in the population from which the data was generated.

We discuss two tests: dip and Silverman. Hartigan’s dip test
[31] rejects the assumption of unimodality if the observed data
is su�ciently di�erent from the closest possible uniform distri-
bution. �e dip test has been used to calculate the number of
clusters, to �nd suitable clusters, and to test for clusterability
[40]. Silverman [53] is based on the kernel density estimate.
�e technique approximates the empirical distribution of the
observed data with a set of Gaussian distributions. If a suf-
�ciently large bandwidth is required to produce a unimodal
empirical distribution estimate, then the test concludes that
the underlying data distribution is multimodal, comprising a
mixture of distinct Gaussian distributions.

One may be tempted to forgo dimension reduction, apply a
multimodality test, and conclude that the data is clusterable
if the dataset rejects the null hypothesis for unimodality [20].
Unfortunately, the asymptotic behavior of these tests is un-
knownwhen the data is multi-dimensional [20, 32, 42, 56]. �is
severe limitation renders these methods unpredictable for real
datasets, most of which have multiple, if not high dimensions,
unless the user �rst reduces the data to one dimension.
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We now introduce previous notions of clusterability, start-
ing with those that rely on a combination dimensionality re-
duction and multimodality tests. We then discuss the Hopkins
statistic, which tests for spatial randomness, and introduce
several new notions. �is section concludes with a brief sum-
mary of notions of clusterability that are not well-suited to
the goals of the current analysis.

2.3 Clusterability via multimodality
2.3.1 Dip Test on Pairwise Distances (Dip-dist). Dip-dist

[40] tests for clusters in the set of dissimilarities using the Dip
test [31]. �e lengths of the pairwise distances are su�cient
for clusterability analysis without needing to consider how
the distances are arranged to form the data. Multiple modes
in the distance distribution suggest the presence of multiple
clusters.

2.3.2 Silverman Test on Principal Curve (Pcurve Silv.) To
combat the curse of dimensionality, one recommendation is
to use Silverman’s test9 for multimodality of principal curves
[10]. �e �rst dimension of the principal curve is extracted
and Silverman’s test is used to determine if that dimension
is unimodal or multimodal. A multimodal principal curve
suggests that the original, higher dimensional data exhibits
cluster structure.

2.3.3 Silverman Test on Principal Component (PCA Silv.)
A linear alternative to the principal curve is to extract the �rst
principal component of the data [10]. �is one dimensional
transformation explains the maximum amount of variation
in the data. �e method then applies Silverman’s test to this
�rst principal component.10 11 A multimodal �rst principal
component reveals that a linear transformation that explains
most of the variance of the data containis clusters and hence
suggests that the original data is clusterable.

2.3.4 Classic Methods (Classic Dip and Classic Silv.)
While it is known that multimodality tests may be problem-
atic in higher dimensions, we include these methods in our
comparisons for completeness. �at is, Classic Silverman and
Classic Dip conduct, respectively, Silverman’s and the Dip test
of multimodality on the original, multi-dimensional data.

2.4 Clusterability via Spatial Randomness
Another method by Hopkins [36, 43], (Hop.), a test of spatial
randomness, tells us if any feature is distributed non-randomly
across the dataset. Hopkins compares the distances between
a sample of data points and their nearest neighbors to the
distances from a sample of pseudo points – with each feature
randomly selected from the full dataset – and their nearest
neighbors. If the data are not distributed in clusters, then both
sets of distances should be similar on average. �e Hopkins
statistic is calculated based on these distances [36, 43].

9Corrections for both Silverman’s original test and the dip test have been pro-
posed [19, 29], but only the correction for Silverman is available in standard
so�ware, such as R.
10Prior to PCA, the data is centered about its mean.
11Computationally, PCA is performed using the singular value decomposition
of the centered data, and the rotated variables are extracted.

Clusterability can be inferred by comparing to a threshold
calcuated based on the distribution of the Hopkins statistic.
Under the null hypothesis that the data is unclusterable, the
test statistic follows a beta distribution with both parameters
equal to the number of points selected to sample n [36, 43].
�us, Hopkins’ statistic should be compared to a Beta quantile
qα (n,n). 12 13 Yet, the choice of n requires caution. According
to [43], “if too few points are chosen, then the nearest-neighbor
distances chosen will not be representative of the entire distri-
bution of distances. If too many points are chosen, Dubes and
Zeng [22] warn that the assumptions about the Beta distribu-
tion will be invalid.” Previous authors recommend sampling
5 − 10% of the data [16, 43]. In this paper, we calculate the
Hopkins statistic using a 10% sampling rate.

2.5 New Clusterability Methods
We combine and compare clusterability measures, as well as
proposing additional approaches for studying and evaluating
clusterability. �is section focuses on an exposition of our ad-
ditional approaches, while the following two sections provide
extensive simulations and results from real datasets.

Since both the dip and Silverman’s test are valid statistical
tests of multimodality, we propose to use both on each reduced
version of the data. �us, to our knowledge, the following
methods below have not been proposed in the literature and
need to be brie�y described.

2.5.1 Silverman’s test on dissimilarities (Silv.-dist). Rather
than using the dip test on the set of pairwise distances [40], we
propose to use Silverman’s test, with the necessary correction
[29].

2.5.2 Dip test on principal component (PCA Dip). In [10],
Instead of using Silverman’s test of whether the �rst principal
component is multimodal, this method uses the dip test.

2.5.3 Dip test on principal curve (Pcurve Dip). Similarly,
this method uses the dip test to classify the principal curve of
a dataset as unimodal or multimodal.

2.6 �antifying E�ciency: Runtime
Selecting a suitable clusterability measure involves both quali-
tative and quantitative considerations. In this work, we focus
on qualitative analysis, exploring which measures are most
e�ective and di�erentiating them based on the types of clus-
ter structures that they identify. Nevertheless, quantitative
considerations remain an important part of the process of se-
lecting a suitable measure. �ere are signi�cant di�erences
in the computational complexity of clusterability techniques
that render some of them impractical when the number of
elements (n) or the dimension (d) is large.

Classic Dip is linear in n [42]. Hopkins, Classic Silver-
man, and Dip-Dist have quadratic running time in n. �e
12�e Beta quantile de�ned as the value such that, assuming the data was
generated without clusters, the chance of concluding that the data is clustered,
i.e. P (H < qα (n, n)) is 100α%. We use a one-sided test because if the data is
more spatially random than expected by chance, it would still be unclusterable.
13 Note that the Hopkins statistic approaches a Gaussian distribution for large
samples (e.g. n > 50) In this case, one could instead use the threshold 0.5 −
z1−α /(2

√
2n + 1) where n is the number of points sampled.
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dimensionality of the data impacts the running time of PCA-
based approaches, with PCA dip having asymptotic running
time of O(nd2 + d3) [23]. Silverman-dist is bounded by a
quadric function in n. Finally, PCA Silverman has complexity
of O(n2 + d2n + d3).14

2.7 Other Clusterability Methods
Many notions of clusterability have been proposed to study
clustering from a theoretical standpoint or investigate speci�c
clustering paradigms. As such, there are some notions in the
literature that have been omi�ed from our study, as they are
either impractical or otherwise unsuited to our goals.

Measures used for theoretical analysis are o�en NP-hard to
compute [3]. Since we seek notions that are e�cient, and thus
applicable in practice, we had to omit all such measures from
our analysis. Many other notions, based on speci�c algorithms
or objective functions [3, 11, 12, 14, 45, 49], are also omi�ed
from our comparative analysis, as our study is concerned with
identifying the presence of any cluster structure, not only that
which can be discovered by a speci�c clustering technique.

Even before delving into the analysis, the e�ectiveness re-
quirement allowed us to eliminate several notions of cluster-
ability (strict separation [15] andworst pair ratio [24]). Despite
their elegance and utility for theoretical analysis, these no-
tions are too strict for practical application due to their high
sensitivity to noise and outliers. Lastly, some approaches to
clusterability, such as [54], rely on subjective judgment, and
do not provide a quanti�able measure. Such measures are also
omi�ed from our analysis.

3 SIMULATIONS
Our extensive simulations evaluate each approach to cluster-
ability using all clusterability tests in Sections 2.3-2.5. �e
simulations include 35 types of datasets, each generated with
the same parameters 1000 times, for a total of 35,000 simu-
lations. �e code is found at this link: h�p://www.cs.sjsu.
edu/∼ackerman/clusterability.R. Simulations consist of clus-
ters generated from one or more Gaussian or t-distributions
and sometimes with a small number of outliers. For example,
row (12) of Table 1 describes the results for three bivariate
Gaussian clusters, each consisting of 50 points, with means
at (30, 20), (40, 20), and (35, 30) and standard deviations of 2.
Chaining data is also simulated with one or two lines and two,
three, or �ve circles. Simulations were performed in R version
3.3.2. Due to space limitations, the appendix, found at h�p:
//www.cs.sjsu.edu/∼ackerman/appendix-clusterability.pdf, in-
cludes further details with all parameters used in each set of
simulations.

In Table 1, we record the the percentage of datasets on
which the test yielded a p-value less than 0.05, indicating
that the tests rejected the null hypothesis of unimodality at
the traditionally used 5% signi�cance level. High values in
Table 1 indicate high values of clusterability, while low values
indicate poor clusterability. For unambiguously unclusterable

14As shown in [23], PCA Silverman requiresO (nd2+d3) operations to calculate
the principal component. �en it performs Silverman’s test, which is bounded
by O (n2). �erefore, the total complexity isO (n2 + d2n + d3).

datasets, the proportion of rejections corresponds to type I
error, the rate of erroneously classifying datasets generated
without clusters as clusterable. Type I error greatly exceeding
5% indicates that the method is invalid and produces excessive
false positives. For unambiguously clusterable datasets, the
proportion of rejections corresponds to the statistical power,
or ability of the test to correctly classify clusterable sets as
having cluster structure. Higher power is desirable. �e ranks
of the power values tells us which methods are more likely to
capture the structure in clustered data. However, results are
complicated by the ambiguous nature of clustering. When a
small number of outlying points are present, the decision to
classify the data as clusterable depends on whether outliers
should be considered as small clusters.

Finally, because ��ing a principal curve a large number
of times may induce convergence problems, we record the
proportion of the time that the principal curve converged
properly within 1000 iterations.

3.1 Type I error: Unclusterable Data
First, consider data generated without cluster structure. Prin-
cipal curve methods were invalid, concluding that most single-
cluster datasets were clusterable at a much higher rate than
5%.15 Hopkins, PCA-Silverman and classic Silverman have
type I error around 5% as expected in two dimensions.16 For
all other cases, distance based methods have excessively low
type 1 error of less than 1%, indicating that they may be overly
conservative. Similarly, Hopkins statistic has very low type
1 error for data with more than 2 dimensions. Overall, all
methods except principal curves have reasonably low false
positive rates for single Gaussian clusters.

3.2 Performance with outliers and small
clusters

When outlying points are introduced to otherwise uncluster-
able data, one could argue either for or against clusterability.
Methods vary in their conclusions: Dip-based methods clas-
sify the data as unclusterable, while the Hopkins statistic and
Silverman-based methods classify such data as clusterable,
considering the outliers as separate clusters. Similarly, rows
(8), (9), and (10) feature single t-distributed clusters with 5, 10,
and 15 degrees of freedom.17 Dip-based methods consider the
data clusterable less than 10% of the time, even for 5 degrees
of freedom, when multiple outliers are likely; Hopkins and
Silverman-based methods conclude that the data is clusterable

15While principal curves converged properly over 90% of the time on these
datasets, they overwhelmingly failed to converge for linear data.
16For valid methods, values in Table 1 should be below or reasonably close to 0.05.
If the true false positive rate is 5%, then we would expect with 95% con�dence
that the observed value should be below 0.05 + 1.96 ∗

√
0.05 ∗ 0.95/1000 ≈

0.064. Based on this threshold, PCA Silverman has slightly in�ated type I error
in 50 dimensions, and Classic Silverman has in�ated type I error in 3 dimensions.
However, because we would expect 5% of the results for unclusterable datasets
to exceed this value, it is not unusual to see 2 results with slightly in�ated
type I error rates. In fact, if we adjust for the total number of comparisons for
unclusterable data, then the false positive rates would be compared to a di�erent
threshold (0.072) and would not be considered excessive. Additional simulations
would be needed to con�rm that the false positive rates are indeed controlled.
17T-distributions with small degrees of freedom are highly likely to have outliers.
As the degrees of freedom increases, the distribution will converge to Gaussian.
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a considerable proportion of the time, ranging from 44% to
85%. As expected, the proportion decreases as the degrees of
freedom increases and the distribution converges to Gaussian.

Where the dip test is robust to outliers, Silverman’s test and the
Hopkins statistic allow for small clusters. �is �nding re�ects
the inherent ambiguity of clustering; for some applications,
small clusters are acceptable, while for others, robustness to
outliers is desired. In fact, clustering algorithms display the
same phenomenon, where some tend to identify small clusters,
while others e�ectively view such data as outliers [8].

3.3 Power: Clusterable data
When clusters were well-separated, all methods had exactly
or nearly 100% power, even in the presence of noise. When
two ��y-dimensional clusters were close to each other as in
row (20), all methods have nearly perfect power except for
Classic Dip with around 70% power. For partially overlapping
50D clusters, e.g. row (21), the power of the Hopkins test
drops to 32% and both classic methods drop below 5%. �is
indicates that classical methods perform poorly in high dimen-
sions for overlapping clusters. By contrast, utilizing either PCA
or pairwise distances, both Dip and Silverman tests maintain
near perfect power to detect the presence of these close or
overlapping high dimensional clusters. We also examine two-
dimensional data generated from independent T-distributions
with 5, 10, and 15 degrees of freedom. All methods have nearly
100% power to detect the t-distributed clusters.

Similarly, most methods had high power (above 80%) to de-
tect data with three or four clusters, except that power for PCA
dip and the Hopkins statistic dropped when the separation
between clusters decreased. Speci�cally, classic and distance-
based methods, as well as PCA Silverman, considered all and
PCA-based methods considered nearly all (95+%) datasets as
clusterable. Results are shown in rows 14-19 of Table 1.

3.4 Data with chaining structure
Finally, we examine data with chaining structure, including a
single line, two parallel lines, one, two, three, and �ve concen-
tric circles, and both a line and a circle. For data arranged in
one line, classic dip, PCA methods and distance methods did
not conclude that the data had multiple clusters. By contrast,
Hopkins classi�ed the line as clusterable nearly 40% of the
time, and classic Silverman concluded the data had structure
over 10% of the time. Surprisingly, all methods except dist-dip
considered a single circle as clusterable. Distance Silverman
concluded that the single circle had cluster structure about
30% of the time, while PCA, classical methods, and Hopkins
concluded the same over 85% of the time. Principal curve
methods nearly always failed to converge for data comprising
a single line. �us, dip-dist may be the only valid method for
chaining data.

While both classic and PCA methods fail to detect the in-
herent structure of multiple groups of chaining data, distance-
based methods and Hopkins continue to detect the clusters.
Multiple parallel lines, depicted in row 18, are considered clus-
terable by distance based methods and reasonably well (87%
power) by Hopkins. PCA based methods have less than 12%

power, failing to detect the separate lines most of the time.
Similarly, distance based methods both have 100% power and
Hopkins has nearly 90% power to detect distinct circles, while
PCA and classic methods have reduced power for 2 or 3 circles.
All methods had high power (≥89%) to detect cluster structure
in data consisting of one circle and one line except PCA dip,
which only concluded the data was clusterable 20% of the time.
In sum, dip-dist was the most e�ective method for chaining data.
In fact, it was the only method that didn’t excessively conclude
that data generated to lack groups was clusterable, and it had
high power to detect clustered chaining data.

3.5 Summary
In sum, our simulations indicate that both spatial randomness
tests and multimodality tests on one-dimensional reductions
are e�ective and accurate methods of classifying datasets by
their level of clusterability. Both clusterable and unclusterable
datasets were identi�ed as such in most simulations. Distance-
based methods perform well in nearly all scenarios. PCA
methods adequately detect structure in simulated data with
two or three clusters. In low dimensions, PCA power is not
as high as for distance-based methods. Outliers are treated
as clusters by all variations of Silverman and the Hopkins
statistic. �eHopkins statistic loses signal when clusters touch
or overlap. In high dimensions and for chaining data, classical
methods are inappropriate. Principal curve methods have
excessive false positives and fail to converge for linear data.

4 RESULTS ON REAL DATASETS
In this section, we apply our methods of clusterability eval-
uation to real datasets from the R datasets package.18 �e
datasets we present were selected to ensure su�cient sample
size and varied dimension. For the sake of completeness, we
include all tests, but the reader should recall that some tests
may be inappropriate under various conditions. References
were examined for evidence of previously known cluster struc-
ture. Overall, results of the clusterability tests were consistent
with expectations based on the simulations.

Two famous datasets that were known a priori to have clus-
ter structure were considered clusterable under all methods.
First, the iris dataset [26] is known to have three clusters cor-
responding to three species of iris �owers. Second, the faithful
dataset [13, 30], which captures eruption duration and waiting
time for the Old Faithful geyser, has previously been shown
to have two groups [50]. All of the tests conclude that both
datasets are clusterable, agreeing with previous knowledge.

Paralleling our simulations, we �nd that the Hopkins sta-
tistics or the Silverman tests may be preferred when small
clusters are of interest, while the Dip test may be desired
when the application calls for robustness to outlier. �e one-
dimensional rivers dataset [46], which contains the lengths, in
miles, of 141 major North American rivers, exhibits inherent
cluster structure if we allow small clusters. Hopkins method
and all methods that use Silverman indicate that the data is
clusterable (p < 0.05), while all dip-basedmethods fail to reject

18Due to the use of sampling in Hopkins’ method, we run the method 100 times
for each dataset and report the proportion of p-values less than 0.05.
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Dataset Dip Dist Silv. Dist Hop. Dip Silv. PCA Dip PCA Silv. Pcurv Dip Pcurv Silv.
1. 1 cluster 2D 0.000 0.042 0.057 0.001 0.055 0.001 0.053 0.179 0.346
2. 1 cluster 3D 0.000 0.042 0.012 0.000 0.068 0.002 0.062 0.213 0.444
3. 1 cluster 10D 0.000 0.035 0.000 0.000 0.055 0.003 0.057 0.235 0.585
4. 1 cluster 50D 0.000 0.033 0.000 0.000 0.052 0.002 0.064 0.220 0.764
5. 1 cluster 2D with outlier 0.000 0.987 0.858 0.000 0.890 0.005 0.998 0.136 0.984
6. 1 large cluster 2D with outlier 0.000 0.975 1.000 0.000 0.911 0.001 0.989 0.331 0.980
7. 1 cluster 2D with 3 outliers 0.101 0.976 0.815 0.000 0.954 0.003 0.942 0.016 0.935
8. 1 T-dist cluster with df=5 0.007 0.573 0.852 0.000 0.440 0.000 0.463 0.070 0.490
9. 1 T-dist cluster with df=10 0.000 0.214 0.657 0.000 0.240 0.000 0.282 0.095 0.348
10. 1 T-dist cluster with df=15 0.000 0.117 0.579 0.002 0.209 0.000 0.220 0.098 0.344
11. 2 separated clusters 2D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
12. 3 close clusters 2D 0.996 1.000 0.789 1.000 1.000 0.801 0.974 0.757 0.826
13. 3 noisy clusters 2D 1.000 0.996 0.989 0.999 0.995 1.000 0.999 1.000 0.983
14. 3 clusters, varied diameters 2D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15. 3 clusters, varied density 2D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
16. 3 separated clusters 2D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
17. 3 separated clusters 3D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
18. 2 separated clusters 10D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
19. 4 separated clusters 10D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.884
20. 2 close clusters 50D 1.000 1.000 1.000 0.691 0.999 1.000 1.000 1.000 1.000
21. 2 partially overlapping 50D 1.000 1.000 0.445 0.000 0.041 1.000 1.000 0.995 0.997
22. 2 T-dist cluster with df=5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
23. 2 T-dist cluster with df=10 1.000 1.000 0.999 1.000 0.998 1.000 1.000 1.000 0.999
24. 2 T-dist cluster with df=15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25. SingleCircle 0.010 0.309 0.837 0.951 0.945 0.909 0.988 0.626 0.775
26. 2 concentric circles 1.000 1.000 0.873 0.533 0.751 0.322 0.472 0.619 0.802
27. 3 concentric circles 1.000 1.000 0.894 0.167 0.486 0.079 0.193 0.607 0.774
28. 5 concentric circles 1.000 1.000 1.000 0.364 0.394 0.159 0.364 0.726 0.895
29. SingleLine 0.004 0.049 0.378 0.000 0.112 0.000 0.055 0.642 N/A
30. 2 parallel lines 1.000 0.889 1.000 1.000 0.996 0.000 0.055 0.997 0.989
31. Line+Circle 0.998 0.999 1.000 1.000 0.958 0.209 0.894 0.876 0.982

Table 1: Proportion of datasets classi�ed as clusterable over 1000 runs of each type, for a total of 33000 simulations.
Scores denote the proportion of the time that the test concluded that the data was clusterable.

Dataset Dip Dist Silv. Dist Hop. Classic Dip Classic Silv. PCA Dip PCA Silv. Pcurve Dip Pcurve Silv.
faithful < 0.0001 < 0.0001 1.00 < 0.0001 < 0.0001 0.0017 < 0.0001 < 0.0001 < 0.0001
iris < 0.0001 < 0.0001 1.00 0.0014 0.0010 < 0.0001 < 0.0001 0.0164 0.0022
rivers 0.2772 < 0.0001 0.92 0.9922 0.0192 0.9922 0.0334 0.9922 0.0291
swiss < 0.0001 < 0.0001 0.41 0.1386 < 0.0001 0.0001 < 0.0001 < 0.0001 0.0010
a�itude 0.9040 0.9598 0.00 0.9113 0.9150 0.6846 0.1534 0.1823 0.2174
cars 0.6604 0.9931 0.19 0.8613 0.3396 0.8320 0.4213 0.7680 0.5866
trees 0.3460 0.2900 0.18 0.0001 < 0.0001 0.8414 0.3675 0.6717 0.2282
USJudgeRatings 0.9938 0.7313 0.69 0.0014 0.0187 0.8550 0.1412 0.4501 < 0.0001
USArrests 0.9394 0.1887 0.01 0.6261 0.0171 0.5545 0.1286 0.0045 < 0.0001

Table 2: Clusterability tests appiled to real data. �is table presents the p-values for the each clusterability test on
real datasets from the R Datasets package. Recall that p < 0.05 signals clusterable data and p ≥ 0.05 signals that data
is unclusterable. �eHopkins value presented is the proportion of the time out of 100 runs that the Hopkins statistic
was below the appropriate beta quantile. For the Hopkins results, high values indicate clusterability.

the null hypothesis of lack of structure. Similarly, swiss [48],
consisting of 6 measures of socio-economic status and fertility

for 47 French-speaking nineteenth-century Swiss provinces,
illuminated logically pre-existing structure. While Classic Dip
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considers the data as unclusterable, and Hopkins considers
the data as clusterable 40% of the time, all other tests detect
clusters. Results support literature that economic indicators
between and within countries may fall into clusters, including
a richer cluster much smaller than the other(s) [27, 35].

�e remaining datasets lacked previously known struc-
ture. Indeed, most tests of clusterability that weren’t known
or shown to be questionable in simulations provided li�le
or no evidence of clusters. Methods based on distances or
PCA concluded that cars [25], a�itude [18], USArrests [46],
trees [51], and USJudgeRatings [38], were unclusterable. Hop-
kins’ method agreed for a�itude and USArrests.

Most of the methods that concluded that these remaining
datasets without known structure were clusterable were pre-
viously shown in the present paper to be questionable. While
classic Silverman and principal curve methods declared the
USArrests [46] and USJudgeRatings [38] datasets clusterable,
Classic methods may be unpredictable in multiple dimensions
(see section 2.2.1), and the principal curve methods had high
false positive rates in our simulations. Interestingly, Hopkins
considered USJudgeRatings clusterable nearly 70% of the time,
trees clusterable 18% of the time, and cars 19% of the time.

�e methods with the most logical results include distance
dip, distance Silverman, PCA dip, and PCA Silverman. Al-
though classic Dip and Silverman methods appear to produce
reasonable conclusions in some famous datasets such as iris,
they have produced conterintuitive results when classifying
other real data, such as USJudgeRatings and USArrests. �is
�nding, which supports previously known theory about the
unpredictability of these tests in multiple dimensions, re�ects
the importance and value of utilizing dimensionality reduction
to evaluate clusterability.

Finally, principal curvemethodswere highly problematic on
real datasets. Even on the famous, well-de�ned dataset faithful,
the principal curve failed to converge a�er 1000 iterations.

5 CONCLUSIONS
�e application of clustering algorithms presupposes the ex-
istence of cluster structure. Clustering techniques tend to
produce some partition for any given dataset, which can lead
to invalid conclusions when the data is unclusterable. Conse-
quently, we advocate for the integration of clusterability into
cluster analysis, allowing users to determine whether cluster-
ing is appropriate for the given data before proceeding with
further processing.

�ough many approaches to clusterability evaluation have
been previously proposed, they vary radically and o�en result
in di�erent conclusions. Here, we perform an extensive anal-
ysis of a variety of clusterability methods, identifying which
are most e�ective as well as when certain measures are be�er
suited than others based on the needs of the application at
hand.

While other notions of clusterability may also warrant in-
vestigation, our paper is the most comprehensive study to date.
We compare several approaches, which apply either spatial
randomness tests to the original data or multimodality tests to
one-dimensional reductions of the data. Extensive simulations

allow us to identify e�ective approaches, as well as di�eren-
tiate amongst them. Notably, experiments on real data sets
parallel the conclusions of our simulations.

Overall, dip-dist and Silv.-dist, as well as PCA dip and PCA
Silverman were the most successful methods in our analy-
sis. Below, we discuss several criteria that may one consider
when selecting amongst clusterability measures, as well as our
�ndings with respect to each criteria.

Below we summarize several qualitative criteria that can
be used to select a suitable clusterability measure for a given
application. In addition to these qualitative considerations,
quantitative comparison based on the e�ciency of these meth-
ods could also be integrated, particularly when data is large.
See Section 2.6 for a comparison of the methods considered in
this analysis based on their computational complexity.
• False positives: By proclaiming to discover cluster struc-

ture when none is present, methods that exhibit excessive
false positives (Type I error) are considered statistically in-
valid. Both methods that reduce data using the principle
curve consistently exhibited in�ated Type I error rates, and
as such we do not recommend these approaches.

• Outliers/small clusters: We discover that clusterability
measures vary drastically in their treatment of sparse dis-
tant points. While Hopkins and Silverman-based methods
treat the points as small clusters, Dip-based methods exhibit
outlier robustness.

• Chaining data: Dip-dist was the only method that consis-
tently performed well on chaining-type data (concentric
circles and parallel lines), able to identify both clusterable
and unclusterable structures of these types.

• High dimensionality: We tested datasets on up to 50 di-
mensions. In our experiments, PCA dip, PCA Silverman,
Dip-dist, and Silverman Dist did well, suggesting that these
methods may be be�er suited to high dimensional data than
the other techniques considered in this analysis.

While our results suggest that some of the methods consid-
ered here work well for data of reasonably high dimension, for
very high dimensional data (particularly when the dimensions
is much greater than the number of elements), additional in-
vestigation is desirable. It is possible that simply modifying
the data reduction method, such as by using Sparse PCA [59],
may be su�cient. �is avenue of investigation is le� for future
work.

We look forward to the widespread application of cluster-
ability tests as part of the clustering process. We close with
the following quote to remind of the importance of testing
for clusterability before proceeding with further – potentially
unnecessary – cluster analysis tasks.

“�ere is nothing so useless as doing e�-
ciently that which should not be done at all”
-Peter F. Drucker
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