
Three New Algorithms for Regular Language Enumeration

Margareta Ackerman1 and Erkki Mäkinen2

1 University of Waterloo, Waterloo ON, Canada
2 University of Tampere, Tampere, Finland em@cs.uta.fi

Abstract. We present new and more efficient algorithms for regular language enumeration problems.
The min-word problem is to find the lexicographically minimal word of length n accepted by a given
NFA, the cross-section problem is to list all words of length n accepted by an NFA in lexicographical
order, and the enumeration problem is to list the first m words accepted by an NFA according to
length-lexicographic order. For the min-word and cross-section problems, we present algorithms with
better asymptotic running times than previously known algorithms. Additionally, for each problem, we
present algorithms with better practical running times than previously known algorithms.

1 Introduction

We would like to explore the language accepted by a given NFA by obtaining a sample of words
from that language. The min-word problem is to find the lexicographically minimal word of length
n accepted by a given NFA. The cross-section problem is to list all words of length n accepted by
an NFA in lexicographical order. The enumeration problem is to list the first m words accepted
by an NFA according to length-lexicographic order 3 (sorting a set of words according to length-
lexicographic order is equivalent to sorting words of equal length according to lexicographic order
and then sorting the set by length using a stable sort.)

We can use algorithms for the above problems to test the correctness of NFAs and regular
expressions. (If a regular language is represented via a regular expression, we first convert it to an
NFA.) While such a technique provides evidence that the correct NFA or regular expression has
been found, an algorithm for the enumeration problem can also be used to fully verify correctness
once sufficiently many words have been enumerated [1, p.11].

An algorithm for the cross-section problem can be used to decide whether every word accepted
by a given NFA on s states is a power (a string of the form x`, for |x| ≥ 1 and ` ≥ 2). It was shown
by Anderson et. al. [2] that if every word accepted by the NFA is a power, then the NFA accepts
no more than 7s words of each length, and further, if it accepts a non-power, it must accept a
non-power of length less than 3s. Using these results, Anderson et. al. [2] get an efficient algorithm
for determining whether every word accepted by an NFA is a power by enumerating all the words of
length 1, 2, . . . , 3s−1 and testing if each word is a power, stopping if the length of any cross-section
exceeds 7s.

The cross-section problem also leads to an alternative solution to the next k-subset of an n-
set problem. The problem is, given a set T = {e1, e2, . . . , en}, to enumerate all k-subsets of T in
alphabetical order. See [3] for details of the solution.

For the min-word and cross-section problems, we present algorithms with better asymptotic and
practical running times than previously known algorithms. In addition, for the enumeration prob-
lem, we present an algorithm with better practical running time than previously known algorithms,
and the same asymptotic running time as the optimal previously known algorithm.
3 Length-lexicographic order is also known as “radix order” and “pseudo-lexicographic order.”

We analyze the algorithms in terms of their output size, the parameters of the NFA, and the
length of words in the cross-section for the cross-section enumeration algorithms. The output size,
t, is the total number of characters over all words enumerated by the algorithm. An NFA is a
five-tuple N = (Q,Σ, δ, q0, F) where Q is the set of states, Σ is the alphabet, δ is the transition
function, q0 is the start state, and F is the set of final states. In our analysis we consider s = |Q|,
σ = |Σ|, and d, the number of transitions in the NFA. We assume that the graph induced by the
NFA is connected (otherwise, we can preprocess the NFA in O(s+ d) operations.) Our algorithms
are more efficient than previous algorithms in terms of the number of states and transitions of the
NFA, without compromising efficiency on the other parameters.

First we present some previous work on regular language enumeration, as well as set up the
framework which we will use for most of our new algorithms. Next, we present our first set of
algorithms, which we refer to as the AMSorted enumeration algorithms, with better asymptotic
running times than previous algorithms for the min-word and cross-section problems. Next, we
present the AMBoolean enumeration algorithms, with even better asymptotic running times for the
min-word and cross-section problems. Lastly, we present a very simple set of algorithms, which we
call IntersectionEnumeration, which gives a min-word and a cross-section algorithm with the same
asymptotic running time as the AMBoolean algorithms (however, the IntersectionEnumeration
algorithms are inefficient in practice). We perform rigorous testing of our algorithms and previous
enumeration algorithms. We find that the AMSorted algorithm for min-word and the AMBoolean
algorithm for the cross-section and enumeration problems have the best practical running times.

2 Previous Work

The lookahead-matrix cross-section enumeration algorithm presented by Ackerman and Shallit
[3] is the most efficient previously known algorithm in terms of n, the length of the words in
the cross-section. As shown in [3], the cross-section lookahead-matrix algorithm, crossSectionLM is
O(s2.376n + σs2t) [3]. The min-word lookahead-matrix algorithm, minWordLM, finds the minimal
word of length n in O(s2.376n) time and O(s2n) space [3]. The algorithm enumLM, the lookahead-
matrix algorithm for the enumeration problem, uses O(s2.376c + σs2t) operations, where c is the
number of cross-sections encountered throughout the enumeration.

We now analyze these algorithms with respect to d, the number of edges in the NFA. The
lookahead-matrix algorithms use the framework in Section 3. As described in Section 3, after the
minimal word in the cross-section has been found, to enumerate a cross-section we need to examine
the transitions from all the states currently on the state stack (of which there are at most d). Thus,
enumCrossSection is O(s2.376n+ dt). Similarly, enumLM is O(s2.376c+ dt).

Another previous set of algorithms is Mäkinen’s algorithms, originally presented in [4] and
analyzed in the unit-cost model, where it is linear in n. In the bit-complexity model, Mäkinen’s
cross-section enumeration algorithm is quadratic in n. In [3], Ackerman and Shallit discuss the
theoretical and practical performance of two versions of Mäkinen’s algorithms, MäkinenI (MI) and
MäkinenII (MII). The main difference between these two algorithms is the way how they determine
when a given cross-section has been fully enumerated. The MI cross-section algorithm precomputes
the maximal word in a given cross-section, and terminates when the maximal word is found in
the enumeration. The MII cross-section algorithm terminates when the state stack is empty (the
same termination method is used in cross-section in Section 3). While the two versions of Mäkinen’s
algorithm have the same asymptotic running time, the MII cross-section algorithm has better

2

practical performance. The asymptotic running time of Mäkinen’s min-word algorithm is Θ(s2n2),
as shown in [3]. Mäkinen’s cross-section algorithms are O(s2n2 +σs2t), and Mäkinen’s enumeration
algorithms are O(σs2t+s2e), where e is the number of empty cross-sections encountered throughout
the enumeration [3]. If we analyze these algorithms with respect to d, the number of edges in
the NFA, we find that Mäkinen’s min-word algorithms are Θ(dn2), the cross-section algorithms
are O(d(n2 + t)) and the enumeration algorithms are O(d(e + t)). When referring to Mäkinen’s
algorithm, we use the MII versions, calling them minWordM, crossSectionM, and enumM.

The Grail computation package [5] includes a cross-section enumeration algorithm, fmenum,
that uses a breadth-first-search approach on the tree of all possible paths from the start state of
the NFA [5]. The algorithm is exponential in n [3].

It was found that crossSectionM and enumM usually have the best running time in practice. In
special cases, where the quadratic running time of Mäkinen’s cross-section algorithm is reached,
lookahead-matrix performs better [3].

For all algorithms, we assume that the characters on the transitions from state A to state B are
sorted, for all states A and B. Then the running time is independent of alphabet size. Otherwise,
we can sort the characters on transitions between all pairs of states in O(σ log σs2) operations.

3 Algorithm Framework

We present the general framework commonly used for cross-section and enumeration algorithms.
This framework was used for the lookahead-matrix algorithms and Mäkinen algorithms [3]. We use
this framework for most of our new algorithms.

For cross-section enumeration, we first find the minimal word w = a1a2 · · · an in the cross-section
with respect to length-lexicographic order, or determine that the cross-section is empty.

Definition 1 (i-complete). We say that state q of NFA N is i-complete if starting from q there
is a path in N of length exactly i ending at a final state of N .

Let S0 = {q0} and Si = ∪q∈Si−1δ(q, ai)∩{q | q is (n− i)-complete}, for 1 ≤ i < n. That is, Si is
the set of (n− i)-complete states reachable from the states in Si−1 on ai. We find w while storing
the sets of states S0, S1, S2, . . . , Sn−1 on the state stack, S, which we assume is global.

We assume that there is some implementation of the method minWord(n,N), which returns the
minimal word w of length n accepted by NFA N starting from one of the states on top of the state
stack, or returns NULL if no such word exists. Different algorithms use different approaches for
finding minimal words. To find the next word, we scan the minimal word a1a2 · · · an from right to
left, looking for the shortest suffix that can be replaced such that the new word is in L(N). It follows
that the suffix ai · · · an can be replaced if the set of (n− i)-complete states reachable from Si−1 on
any symbol greater than ai is not empty. As we search for the next word of length n, we update
the state stack. Therefore, each consecutive word can be found using the described procedure. The
algorithm is outlined in detail in nextWord. Note that the algorithms use indentation to denote the
scope of loops and if-statements.

Algorithm 1 nextWord(w,N)
INPUT: A word w = a1a2 · · · an and an NFA N .
OUTPUT: Returns the next word in the nth cross-section of L(N) according to length-lexicographic order if it exists.
Otherwise, returns NULL. Updates S for a potential subsequent call to nextWord or minWord.

3

FOR i← n, . . . , 1
Si−1 = top(S)
R = {v ∈ ∪q∈Si−1,a∈Σδ(q, a) | v is (n− i)-complete}
A = {a ∈ Σ | ∪q∈Si−1δ(q, a) ∩R 6= ∅}
IF for all a ∈ A, a ≤ ai

pop(S)
ELSE

bi = min{a ∈ A | a > ai}
Si = {v ∈ ∪q∈Si−1δ(q, bi) | v is (n− i)-complete}
IF i 6= n

push(S,Si)
w′ = w[1 · · · i− 1] · bi· minWord(n− i, N)

RETURN w′

RETURN NULL

Algorithm 2 crossSection(n,N)
INPUT: A nonnegative integer n and an NFA N .
OUTPUT: Enumerates the nth cross-section of L(N).

S = empty stack

push(S, {q0})
w = minWord(n,N)

WHILE w 6= NULL

visit w
w = nextWord(w,N)

The algorithms nextWord and crossSection can be used in conjunction with any algorithms for
minWord and for determining if a state is i-complete.

To get an enumeration algorithm, find the minimal word in each cross-section and call nextWord
to get the rest of the words in the cross-section, until the required number of words is found.

Algorithm 3 enum(m,N)
INPUT: A nonnegative integer m and an NFA N .
OUTPUT: Enumerates the first m words accepted by N according to length-lexicographic order, if there are at least
m words. Otherwise, enumerates all words accepted by N .

i = 0
numCEC = 0
len = 0
WHILE i < m AND numCEC < s DO

S = empty stack
push(S, {q0})
w = minWord(len,N)
IF w = NULL

numCEC = numCEC+1
ELSE

numCEC = 0
WHILE w 6= NULL AND i < m

visit w
w = nextWord(w,N)
i = i+ 1

len = len+1

The variable numCEC counts the number of consecutive empty cross-sections. If the count ever
hits s, the number of states in N , then all the words accepted by N have been visited [3].

4

4 New Enumeration Algorithms

We present three sets of algorithms. Our algorithms improve on the asymptotic time over previous
algorithms for the min-word and cross-section problems. In addition, for all of the enumeration
problems discussed (namely min-word, cross-section, and enumeration), at least one of our algo-
rithms has better practical running time than previous algorithms.

4.1 Ackerman-Mäkinen Sorted Algorithms

We present a modification of minWordM that runs in time linear in n, the length of the words in the
cross-section. The original algorithm appears in [4]. Mäkinen’s original algorithm is linear in n in
the unit-cost model, and as shown in [3], the algorithm is quadratic in n in the bit complexity model.
Here we present a modification of minWordM which is linear in n in the bit-complexity model. We
also present a cross-section enumeration algorithm using this modification of minWordM that is
linear in n. This algorithm is more efficient than the Lookahead-Matrix cross-section algorithm in
terms of the number of states in the NFA, without compromising efficiency in any of the other
parameters.

We now describe the setup for the modification of Mäkinen’s algorithm. The algorithm builds
a table for each state, representing the minimal words of lengths 1 through n that can be accepted
from that state. In particular, Amin[1] stores the minimal character that occurs on a transition from
A to a final state; if no such transitions exists, then Amin[1] is NULL. Index i in table Amin stores
a pair (a,B), with symbol a and state B, such that the minimal word of length i that occurs on a
path from A to a final state is a concatenated with the minimal word of length i− 1 appearing on
a path from state B to a final state; if no such path exists, then Amin[i] is NULL.

We define an order on the set {Amin[i] | A ∈ Q} as follows. If Amin[i] = NULL and Bmin[i] 6=
NULL, then Amin[i] < Bmin[i]. In addition, if Amin[1] = a and Bmin[1] = b where a < b, then
Amin[1] < Bmin[1]. For i ≥ 2, if Amin[i] = (a,A′) and Bmin[i] = (b, B′) where a < b, or a = b and
A′min[i− 1] < B′min[i− 1], then Amin[i] < Bmin[i].

Algorithm 4 minWordAMSorted(n, N)
INPUT: A positive integer n and an NFA N .
OUTPUT: Table Amin[1, . . . , n] for each state A ∈ Q where Amin[i] = (a,B) and the minimal word of length i that
occurs on a path from A to a final state is a concatenated with the minimal word of length i− 1 appearing on a path
from state B to a final state.

FOR each A ∈ Q
IF for all a ∈ Σ, δ(A, a) ∩ F = ∅
Amin[1] = NULL

ELSE
Amin[1] = min{a ∈ Σ | δ(A, a) ∩ F 6= ∅}

FOR i← 2, . . . , n
Sort the set {Amin[i− 1] | A ∈ Q}
FOR each A ∈ Q

a = min{a ∈ Σ | Bmin[i− 1] 6= NULL, B ∈ δ(A, a)}
min = NULL
FOR each B ∈ Q such that B ∈ δ(A, a)

IF Bmin[i− 1] 6= NULL
IF Bmin[i− 1] < min OR min = NULL
min← Bmin[i− 1]

Amin[i] = (a,min)
RETURN {Amin | A ∈ Q}

5

Notice that sorting {Amin[i − 1] | A ∈ Q} takes s log s operations, since the sorting consists of
sorting the pairs by their values of {Amin[i − 2] | A ∈ Q}, for which the order has already been
computed, followed by sorting the symbols in the pairs.

Since we assume that the characters on the transitions between states are sorted, minWor-
dAMSorted uses O(n(s log s+d)) operations. Observe also that minWordAMSorted uses O(sn) space.

Theorem 1. The algorithm minWordAMSorted uses O((s log s+ d)n) operations and O(sn) space
to find the minimal word of length n accepted by an NFA, where s is the number of states and d is
the number of transitions in the NFA.

There are two main differences between this version of Mäkinen’s algorithm and the original.
The first is the mode of storage, as the original algorithm stored the minimal word of length i that
occurs on a path from A to a final state in cell Amin[i]. The second modification is the sorting of
the set {Amin[i] | A ∈ S}. These changes eliminate the need for expensive comparisons.

We can use minWordAMSorted as part of a cross-section enumeration algorithm, by replacing
minWord with minWordAMSorted, giving algorithm crossSectionAMSorted. To determine if a state
A is i-complete, we simply check whether Amin[i] 6= NULL. The algorithm crossSectionAMSorted
finds the minimal word in the cross-section in O((s log s+d)n) operations, and finds the remaining
words in O(dt) where t is the output size. Therefore, crossSectionAMSorted uses O(ns log s + dt)
operations.

Theorem 2. The algorithm crossSectionAMSorted uses O(ns log s + dt) operations to enumerate
the nth cross-section of a given NFA, where s is the number of states and d is the number of
transitions in the NFA and t is the number of characters in the output.

We can also use minWordAMSorted as part of an enumeration algorithm, by replacing minWord
with minWordAMSorted giving algorithm enumAMSorted. After enumerating the nth cross-section
we have a table Amin[1, . . . , n] for each state A. To improve the performance of enumAMSorted,
when minWordAMSorted is called for n + 1, we reuse these tables, extending the tables by index
n+ 1. Therefore, each call to minWordAMSorted(i, S) costs O(s log s+ d). Finding the rest of the
words in the cross-section costs O(dt).

For each empty cross-section, the algorithm does O(s log s+d) operations. Therefore, enumAM-
Sorted uses O(c(s log s+ d) + dt)) operations, where c is the number of cross-sections encountered
through the enumeration. The running time is independent of alphabet size since the characters
on transitions between every pair of states are sorted, so for every state on the state stack we can
keep a pointer to the last characters used, and progress it when the state is revisited. When a state
is removed from the state stack then the pointer is reset.

Theorem 3. The algorithm enumAMSorted uses O(c(s log s+ d) + dt)) operations, where c is the
number of cross-sections encountered throughout the enumeration.

4.2 Ackerman-Mäkinen Boolean Algorithms

We introduce another modification of Mäkinen’s algorithms which yields algorithms that are ef-
ficient both theoretically and practically. These algorithms are more efficient than the AMSorted
algorithms in terms of the number of states in the NFA, without compromising efficiency in any of

6

the other parameters. The min-word and cross-section algorithms in this section have better asymp-
totic running times than previous algorithms for these problems. In addition, the cross-section and
enumeration algorithms presented in this section have the best practical running times.

The main function of the lookup tables constructed by Mäkinen’s algorithm is to enable quick
evaluation of i-completeness. Instead of storing characters, we propose storing boolean values in
the lookup table. That is, Amin[i] is true if and only if state A is i-complete.

Algorithm 5 preprocessingAMBoolean(n, N)
INPUT: A positive integer n and an NFA N .
OUTPUT: Table Amin[1, . . . , n] for each state A ∈ Q where Amin[i] is true if and only if A is i-complete.

FOR each A ∈ Q
IF for all a ∈ Σ, δ(A, a) ∩ F = ∅
Amin[1] = FALSE

ELSE
Amin[1] = TRUE

FOR i← 2, . . . , n
FOR each A ∈ Q

Amin[i] = FALSE
FOR each B ∈ δ(A, a) for any a ∈ Σ

IF Bmin[i− 1] = TRUE
Amin[i] = TRUE

RETURN {Amin | A ∈ Q}

The preprocessing takes O((s + d)n) operations. Now, to find the minimal word of a given
length n as well as the rest of the words in the cross-section, we use the state stack (as described
in Section 3), which takes O(dt). This gives a O(d(n+ t)) algorithm for cross-section enumeration
(recall that we assume that the graph induced by the NFA is connected, and thus s ≤ d.) We call
this algorithm crossSectionAMBoolean.

Theorem 4. The algorithm crossSectionAMBoolean uses O(d(n+ t)) operations to enumerate the
nth cross-section, where d is the number of transitions in the NFA and t is the number of characters
in the output.

Similarly, to use this approach for enumerating the first m words accepted by an NFA, we extend
the tables by one for each consecutive cross-section in O(s+ d) operations, and use the state stack
to enumerate each cross-section. This gives a O(d(c + t)) time algorithm, where c is the number
of cross-sections encountered throughout the enumeration. Or, since each non-empty cross-section
adds at least one to t, we can express the asymptotic running time in terms of e, the number of
empty cross-sections encountered by the algorithm, giving O(d(e+ t)).

Theorem 5. The algorithm enumAMBoolean uses O(d(e+t)) operations, where c is the number of
empty cross-sections found throughout the enumeration, d is the number of transitions in the NFA,
and t is the number of characters in the output.

Note also, that we can terminate crossSectionAMBoolean after the first word is found, giving a
O(dn) running time algorithm for min-word - we call this algorithm minWordAMBoolean.

7

4.3 Intersection Cross-Section Enumeration Algorithm

We introduce a new cross-section enumeration algorithm, that is both very simple and has good
asymptotic running time. The main idea of the algorithm is to create an NFA, such that when cross-
SectionEnum traverses the NFA looking for i-complete states, all reachable states are i-complete.

Let Alln be the minimal DFA that accepts all words over Σn.

Algorithm 6 minWordIntersection(n, N)
INPUT: A positive integer n and an NFA N .
OUTPUT: The minimal word of length n accepted by N .

1. Find NFA C = N ×Alln.

2. Perform a breadth-first-search starting from the final states of C using reverse transitions, and remove all unvisited
states.

3. Find the minimal word of length n accepted by C by traversing C from the start state following minimal
transitions.

The NFA C, the cross-product of N with the NFA that accepts all words of length n, can be
constructed by concatenating n copies of N . Notice that C has O(dn) transitions. Step 2 and 3 run
in time proportional to the size of C. Therefore, minWordIntersection uses O(dn) operations.

Theorem 6. The algorithm minWordIntersection uses O(dn) to find the minimal word of length n
accepted by a given NFA, where d is the number of transitions in the NFA.

To find all the words in the cross-section, perform breadth-first search, recording all the words
of length n occurring on paths of length n starting from the start state. That is, if we store the
sets of states visited by minWordIntersection on a state stack, and use minWordIntersection with
enumCrossSection, we get algorithm crossSectionIntersection.

We can use minWordIntersection to make a cross-section enumeration algorithm, crossSection-
Intersection. That is, we can use the enumCrossSection algorithm on C instead of N , with min-
WordIntersection. All paths starting from the start state in C lead to a final state in n states;
therefore, testing for i-completeness is not needed.

The algorithm crossSectionIntersection uses O(dn) operations to find the minimal word of length
n, and O(dt) to find every other character in the cross-section. Therefore, crossSectionIntersection
uses O(d(n+ t)) operations.

Theorem 7. The algorithm crossSectionIntersection uses O(d(n+ t)) operations to enumerate the
nth cross-section in a given NFA, where d is the number of transitions in the NFA, and t is the
number of characters in the output.

5 Experimental Results

We compare the practical performance of the new algorithms with the best previously known
algorithms. From [3], we know that among the Grail enumeration algorithms, the lookahead-matrix
algorithms, and two versions of Mäkinen’s algorithm, the Mäkinen algorithms tend to have the best
practical performance. In some cases, Lookahead-Matrix performs better than Mäkinen’s algorithm
[3]. Therefore, we compare the new algorithms presented here with Mäkinen’s and the lookahead-
matrix algorithms.

8

A large body of tests was randomly generated. Most tests follow the following format: 100
NFAs were randomly generated with a bound on the number of vertices and alphabet size. The
probability of placing an edge between any two states was randomly generated. The probability
of any state being final or the number of final states was randomly generated within a specified
range. The algorithms were tested on NFAs with differing number of states, varying edge densities,
various alphabet sizes, and different proportions of final states.

In addition, we tested the algorithms on NFAs on which crossSectionLM performs better than
crossSectionM. An example of this type of NFAs is presented in Figure 1. To see why crossSectionM
has quadratic running time on these type NFA, see [3]. All but the tests on the Lm NFAs (see
Figure 1) are on sets of randomly generated NFAs with up to 10 nodes.

Fig. 1. NFA Lm.

We perform three groups of tests. The first group is aimed at determining the practical efficiency
of the new min-word algorithms. We compared minWordM, minWordAMSorted, minWordAMBoolean,
and minWordLM. In most of these tests, minWordAMSorted algorithm performs best. The only tests
in which minWordAMSorted did not have the best performance was in some of the tests with the
Lm NFAs (see Figure 1), but even on these NFAs this algorithm’s performance was close to the
performance of the fastest algorithm for these tests.

The second set of tests evaluates the new cross-section enumeration algorithms. We compare
crossSectionM, crossSectionAMSorted, crossSectionAMBoolean, crossSectionLM, and crossSectionIn-
tersection. We found that, in general, crossSectionAMBoolean and crossSectionM perform better than
the other algorithms, with their performance very close to each other. On NFAs on which cross-
SectionM is quadratic in the size of the cross-section (the Lm automata), crossSectionAMBoolean
outperforms the other algorithms. Thus, crossSectionAMBoolean has the overall best asymptotic
and practical running time. In addition, we found that crossSectionIntersection is significantly slower
than the other algorithms.

In the third set of tests we compared the practical performance of enumM, enumAMSorted,
enumAMBoolean, and enumLM. The algorithm enumAMBoolean has the best running time. In a few
cases, enumAMBoolean was outperformed by a very small amount by enumM or enumAMSorted. Due
to the nature of the algorithms, it appears that the cases when enumAMBoolean is outperformed
can be attributed to language or implementation specific details. Thus, the AMBoolean algorithms
have the best practical performance for both the cross-section and the enumeration problem.

9

The tests were written in C# 3.0 and run on Microsoft Windows Vista Business, Intel(R)
Core(TM)2 Duo CPU 1.80GHz, 1.96 GB of RAM. We summarize our experiments in Tables 2-4 in
the appendix.

6 Summary and Future Work

We presented three sets of algorithms: The AM-Sorted min-word, cross-section and enumera-
tion algorithms, the AM-Boolean min-word, cross-section and enumeration algorithms, and the
intersection-based min-word and cross-section algorithms. We then compared the practical perfor-
mance of these algorithms with the two best previously known sets of algorithms, lookahead-matrix
and Mäkinen. We found that minWordAMSorted, crossSectionAMBoolean, and enumAMBoolean have
the best practical running times.

Table 4 summarizes the asymptotic running times of the new and old algorithms. Recall that s
is the number of states and d is the number of transitions in the NFA, t is the number of characters
in the output, c is the number of cross-sections encountered throughout the enumeration, and e is
the number of empty cross-sections encountered throughout the enumeration.

AMSorted AMBoolean Intersection Mäkinen lookahead-matrix

Min-word O((s log s+ d)n) O(dn) O(dn) O(s2n2) O(s2.376n)
Cross-section O(ns log s+ dt) O(d(n+ t)) O(d(n+ t)) O(d(n2 + t)) O(s2.376n+ dt)
Enumeration O(c(s log s+ d) + dt) O(d(e+ t)) x O(d(e+ t)) O(s2.376c+ dt)

Table 1. Asymptotic performances of the algorithms.

This shows thatO(dn) is the best asymptotic running time for the min-word problem,O(d(n+t))
is the best running time for the cross-section problem, and O(d(e+ t)) is the best running time for
the enumeration problem - all achieved by the AMBoolean algorithms. It would be interesting to
try to find more efficient algorithms for these problems, or explore the question of whether these
are optimal by proving lower bounds.

7 Acknowledgments

We would like to thank Moshe Vardi for a very helpful discussion in which he proposed the idea
behind the intersection-based cross-section algorithm.

References

1. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)
2. Anderson, T., Rampersad, N., Santean, N., Shallit, J.: Finite automata, palindromes, patterns, and borders.

CoRR abs/0711.3183 (2007)
3. Ackerman, M., Shallit, J.: Efficient enumeration of regular languages. LNCS 4783 (2007) 226–242
4. Mäkinen, E.: On lexicographic enumeration of regular and context-free languages. Acta Cybernet 13 (1997) 55–61
5. Department of Computer Science, U.o.W.O.: Grail+ (2008) http://www.csd.uwo.ca/Research/grail/index.html.

8 Appendix

We summarize our experiments, recording time measured in seconds, in Tables 2–4. When an “x”
appears, the test case has not been run to completion due to a high running time.

10

n Mäkinen AMSorted AMBoolean Lookahead-Matrix
L2 5000 3.120 0.031 0.031 0.031
L2 50,000 x 2.777 3.229 3.307
L2 10,000 x 18.283 35.864 29.047
L9 2000 4.336 0.0468 0.0156 0.0780
L9 20000 x 0.624 0.468 0.889
L9 50,000 x 3.4164 3.7908 4.0872
L9 80,000 x 18.782 17.257 14.6016
L9 100,000 x 18.938 36.722 28.018
L9 120,000 x 47.252 50.575 42.713

Alp. size 2, ≤ 10 nodes 3 1.045 0.8976666 1.6160000 2.7340000
Alp. size 2, 1 final 5 0.083 0.078 0.109 0.114
Alp. size 2, 1 final 7 0.114 0.088 4.066 5.699
Alp. size 2, 1 final 8 0.114 0.099 36.462 48.599
Alp. size 3, 1 final 7 0.047 0.042 3.6244000 4.8932000
Alp. size 3, 1 final 8 0.078 0.042 33.285 43.597
Alp. size 3, 1 final 500 42.713 0.905 x x
Alp. size 15, 1 final 100 2.002 0.608 x x
Alp. size 15, 1 final 500 40.092 2.938 x x

Alp. size 5 200 8.611 0.619 x x
Alp. size 10 200 6.839 0.816 x x
Alp. size 10 500 39.359 1.950 x x
Alp. size 10 600 57.164 2.335 x x

Table 2. The performances of the Min-word algorithms.

n Mäkinen AMSorted AMBoolean Lookahead-Matrix Intersection
L2 1000 0.153 0.009 0.006 0.008 x
L2 5000 3.617 0.092 0.057 0.063 x
L2 10000 14.191 0.217 0.157 0.183 x
L9 1000 1.15 0.045 0.026 0.053 x
L9 5000 28.371 0.387 0.307 0.413 x

Alp. size 2, dense graph 5 1.576 1.538 1.539 1.722 21.461
Alp. size 2, dense graph 6 24.163 24.597 24.424 28.126 x
Alp. size 2, dense graph 7 0.191 0.197 0.186 0.226 1.782
Alp. size 2, sparse graph 10 10.322 10.385 10.379 12.908 2:45.835

Alp. size 2, all final 5 1.630 1.632 1.617 1.748 41.961
Alp. size 10, sparse graph 7 1.591 1.580 1.602 1.714 11.302

Table 3. The performances of the Cross-section algorithms.

11

n Mäkinen AMSorted AMBoolean Lookahead-Matrix
L2 100 0.003 0.002 0.002 0.003
L2 1000 0.181 0.161 0.162 0.210
L2 10000 38.681 37.286 36.896 49.048
L9 100 0.004 0.001 0.001 0.001
L9 1000 0.034 0.029 0.025 0.037
L9 10000 2.999 2.702 2.678 0.3461
L9 20000 14.635 12.751 13.027 16.221

Alp. size 2 10 3.966 3.796 3.262 7.677
Alp. size 2 12 5.085 4.882 4.575 8.995

Alp. size 2, dense graph 12 0.046 0.041 0.036 0.047
Alp. size 2, dense graph 20 0.089 0.102 0.083 0.089
Alp. size 2, dense graph 30 0.159 0.159 0.152 0.167
Alp. size 2, dense graph 100 15.882 16.487 16.589 18.477
Alp. size 2, sparse graph 10 0.031 0.028 0.023 0.029
Alp. size 2, sparse graph 20 0.036 0.034 0.028 0.037
Alp. size 2, sparse graph 30 0.041 0.041 0.036 0.044
Alp. size 2, sparse graph 100 0.155 0.146 0.131 0.172
Alp. size 2, sparse graph 1000 12.55 12.504 12.137 13.944

Alp. size 2, all final. 10 0.039 0.038 0.032 0.037
Alp. size 2, all final. 15 0.049 0.052 0.043 0.05
Alp. size 2, all final. 20 0.1 0.096 0.086 0.098
Alp. size 2, all final. 30 2.511 2.497 2.426 3.588

Alp. size 10, sparse graph 100 0.064 0.062 0.058 0.066
Alp. size 2, sparse graph 1000 2.843 2.844 2.862 3.082
Alp. size 2, sparse graph 2000 17.010 17.163 17.685 17.264

Table 4. The performances of the Enumeration algorithms.

12

