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Abstract

The cross-section enumeration problem is to list all words of length n in a regular
language L in lexicographical order. The enumeration problem is to list the �rst
m words in L according to radix order. We present an algorithm for the cross-
section enumeration problem that is linear in n + t, where t is the output size.
We provide a detailed analysis of the asymptotic running time of our algorithm
and that of known algorithms for both enumeration problems. We discuss some
shortcomings of the enumeration algorithm found in the Grail computation package.
In the practical domain, we modify Mäkinen's enumeration algorithm to get an
algorithm that is usually the most e�cient in practice. We performed an extensive
performance analysis of the new and previously known enumeration and cross-section
enumeration algorithms and found when each algorithm is preferable.
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1 Introduction

Given an NFA N , we wish to enumerate the words accepted by N . By �enu-
merate� we mean list the words, as opposed to only counting them. Given
words u = u1u2 · · · un and v = v1v2 · · · vm, u < v according to radix order
if n < m or if n = m, u 6= v, and ui < vi for the minimal i where ui 6= vi.
Sorting a set S of words according to radix order is equivalent to sorting words
in S of equal length according to lexicographic order and then sorting S by
length. Given an NFA accepting a language L, the enumeration problem is
to enumerate the �rst m words in L according to their radix order. Let the
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nth cross-section of a language L ⊆ Σ∗ be L ∩ Σn. Given an NFA accepting
language L, the cross-section enumeration problem is to enumerate the nth

cross-section of L in lexicographical order.

Enumeration algorithms enable correctness testing of NFAs and regular ex-
pressions. (If a regular language is represented via a regular expression, we
�rst convert it to an NFA.) While such a technique provides evidence that
the correct NFA or regular expression has been found, the technique can also
be used to fully verify correctness once su�ciently many words have been
enumerated [1, p.11].

In addition, regular language enumeration leads to an alternative solution
to the next k-subset of an n-set problem. The problem is, given a set T =
{e1, e2, . . . , en}, we wish to enumerate all k-subsets of T in alphabetical order.
Nijenhuis and Wilf provide a solution to this problem [5, p. 27]. A cross-section
enumeration algorithm yields an alternative solution, as follows. Construct an
NFA N over the alphabet {0, 1} that accepts all words with exactly k 1s. The
nth cross-section of N is in bijection with the set of k subsets of T via the
function that takes a word w = a1a2 · · · an in the nth cross-section of N to the
k-subset {ei | ai = 1}. Therefore, we enumerate the nth cross-section of L(N),
which is in bijection with the set of k-subsets of T .

Our contributions are two-fold. On the complexity theoretic side, we give a
cross-section enumeration algorithm, crossSectionLM, with running time lin-
ear in n, the length of words in the cross-section. The best previously known
algorithm is quadratic in n. This cross-section enumeration algorithm has a
corresponding enumeration algorithm, enumLM. To refer to both algorithms
together, we call them the lookahead-matrix algorithms. In addition, we per-
form a theoretical analysis of the previously known algorithms and our al-
gorithms. We analyze the algorithms in terms of their output size, the pa-
rameters of the NFA, and the length of words in the cross-section for the
cross-section enumeration algorithms. The output size, t, is the total number
of characters over all words enumerated by the algorithm. An NFA is a �ve-
tuple N = (Q, Σ, δ, q0, F ) where Q is the set of states, Σ is the alphabet, δ is
the transition function, q0 is the start state, and F is the set of �nal states.
In our analysis we consider s = |Q| and σ = |Σ|.

In the practical domain, we give enumeration algorithms, crossSectionMäki-
nenII and enumMäkinenII, both of which usually perform better than the other
discussed algorithms for their respective problems. The algorithms crossSec-
tionMäkinenII and enumMäkinenII are a combination of Mäkinen's algorithm
[4] and the lookahead-matrix enumeration algorithms. We perform extensive
performance analysis of both previous enumeration algorithms and the algo-
rithms presented here, and �nd when each algorithm performs well. For exam-
ple, one of our �ndings is a set of regular languages on which crossSectionLM

2



outperforms crossSectionMäkinenII.

Here is an outline of the paper. We �rst introduce the general framework for
the enumeration algorithms, after which we describe enumeration algorithms
based on Mäkinen's regular language enumeration algorithm [4]. Then we
introduce the lookahead-matrix algorithms. Next, we discuss an enumeration
algorithm found in the symbolic computation environment, Grail+ 3.0 [3], list
a few bugs, and provide a theoretical analysis of the algorithm. We conclude
with an analysis and comparison of how these algorithms perform in practice.

2 Enumeration Algorithms

2.1 Enumerating the nth Cross-Section

We introduce a general framework for enumerating the nth cross-section of
a language accepted by an NFA, N . First, we �nd the minimal word w =
a1a2 · · · an in the cross-section with respect to radix order, or determine that
the cross-section is empty. We say that state q is i-complete if starting from
q in N there is a path of length i ending at a �nal state. Let S0 = {q0} and
Si = ∪q∈Si−1

δ(q, ai) ∩ {q | q is (n− i)-complete}, for 1 ≤ i < n. That is, Si is
the set of (n− i)-complete states reachable from the states in Si−1 on ai. We
�nd w while storing the sets of states S0, S1, S2, . . . , Sn−1 on the state stack, S,
which we assume is global. We present two methods for �nding the minimal
word in the following two sections. For now we assume that there is some
implementation of the method minWord(n,N), which returns the minimal
word w of length n accepted by NFA N starting from one of the states on top
of the state stack, or returns NULL if no such word exists. To �nd the next
word, we scan the minimal word a1a2 · · · an from right to left, looking for the
shortest su�x that can be replaced such that the new word is in L(N). It
follows that the su�x ai · · · an can be replaced if the set of (n − i)-complete
states reachable from Si−1 on any symbol greater than ai is not empty. As we
search for the next word of length n, we update the state stack. Therefore, each
consecutive word can be found using the described procedure. The algorithm
is outlined in detail in nextWord. Note that the algorithms use indentation to
denote the scope of loops and if-statements.

Algorithm 1 nextWord(w,N )
INPUT: A word w = a1a2 · · · an and an NFA N .
OUTPUT: Returns the next word in the nth cross-section of L(N) according to radix
order if it exists. Otherwise, returns NULL. Updates S for a potential subsequent
call to nextWord or minWord.

FOR i ← n, . . . , 1
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Si−1 = top(S)
R = {v ∈ ∪q∈Si−1,a∈Σδ(q, a) | v is (n− i)-complete}
A = {a ∈ Σ | ∪q∈Si−1δ(q, a) ∩R 6= ∅}
IF for all a ∈ A, a ≤ ai

pop(S)
ELSE

bi = min{a ∈ A | a > ai}
Si = {v ∈ ∪q∈Si−1δ(q, bi) | v is (n− i)-complete}
IF i 6= n

push(S,Si)
w′ = w[1 · · · i− 1] · bi· minWord(n− i, N)
RETURN w′

RETURN NULL

Algorithm 2 enumCrossSection(n,N)
INPUT: A nonnegative integer n and an NFA N .
OUTPUT: Enumerates the nth cross-section of L(N).

S = empty stack
push(S, {q0})
w = minWord(n,N)
WHILE w 6= NULL

visit w
w = nextWord(w,N)

The algorithms nextWord and enumCrossSection can be used in conjunction
with any algorithms for minWord and for determining if a state is i-complete.
We will use nextWord and enumCrossSection to form enumeration algorithms
based on Mäkinen's algorithm. We will also use these algorithms to form the
basis for the lookahead-matrix enumeration algorithms.

2.2 Enumerating the First m Words

We provide a structure for an algorithm that enumerates the �rst m words
accepted by an NFA. The algorithm enum �nds the minimal word in each
cross-section and calls nextWord to get the rest of the words in the cross-
section, until the required number of words is found.

Algorithm 3 enum(m,N )
INPUT: A nonnegative integer m and an NFA N .
OUTPUT: Enumerates the �rst m words accepted by N according to radix order,
if there are at least m words. Otherwise, enumerates all words accepted by N .

i = 0
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numCEC = 0
len = 0
WHILE i < m AND numCEC < s DO

S = empty stack
push(S, {q0})
w = minWord(len,N)
IF w = NULL

numCEC = numCEC+1
ELSE

numCEC = 0
WHILE w 6= NULL AND i < m

visit w
w = nextWord(w,N)
i = i + 1

len = len+1

The variable numCEC counts the number of consecutive empty cross-sections.
If the count ever hits s, the number of states in N , then all the words accepted
by N have been visited. This bound is tight, as it is reached in the NFA
consisting of a cycle of states, with the start state �nal.

Lemma 1 Let N be an NFA with s states accepting an in�nite language L.
The maximum number of consecutive empty cross-sections in L is s− 1.

PROOF. Suppose L is in�nite but contains s consecutive empty cross-sections,
say of length m,m + 1, . . . , m + s− 1. Let w = a1a2 · · · ar be a shortest word
in L of length ≥ m + s. Such a word exists because L is in�nite. Consider
the accepting con�guration q0, q1, . . . , qr of w in N . Now look at the sequence
of states qm, qm+1, . . . , qm+s−1. None of these s states are accepting, since oth-
erwise there would be a word in the associated cross-section. But there is at
least one accepting state in N . So there are at most s − 1 distinct states in
the sequence. Therefore some state is repeated. If we cut out the loop, we get
either a shorter word in L of length ≥ m + s or a word of length between m
and m + s− 1.

We will use enum as a base for creating a number of enumeration algorithms.

3 Mäkinen's Algorithm

Mäkinen [4] presented a cross-section enumeration algorithm. His algorithm
assumes that the language is represented by a regular grammar. A regular
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grammar is equivalent to an NFA and these representations have the same
space complexity. For consistency, we present and analyze Mäkinen's algorithm
on NFAs. The algorithm is separated into two parts: �nding the �rst word of
length n and �nding the remaining words of length n. The original algorithm
for �nding the remaining words applies only to DFAs, and so the NFA has
to be converted to a DFA before the algorithm can be applied. By using
enumCrossSection, we demonstrate an enumeration algorithm that uses parts
of Mäkinen's algorithm and works directly on NFAs, without incurring the
exponential size blow-up of subset construction.

To �nd the minimal word of length n, �rst �nd the lexicographically minimal
words of lengths 1 through n−1 starting at each state, via dynamic program-
ming. Theorem 3.2 in [4] states that the minimal and maximal words of length
n can be found in O(n) time and space. Mäkinen analyzes the algorithm in
the unit-cost model, treating the size of the grammar as a constant. In the
unit-cost model all operations, regardless of the size of the operands, have a
cost of 1. Since Mäkinen's algorithm uses operands of length n, this model
does not fully capture the complexity of the problem. We analyze the algo-
rithm in the bit-complexity model and also take into account the number of
states in the NFA.

Algorithm 4 minWordMäkinen(n, N )
INPUT: A positive integer n and an NFA N .
OUTPUT: Table Amin[1 · · ·n] for each state A ∈ Q where Amin[i] is the minimal
word of length i starting at state A.

FOR each A ∈ Q
IF for all a ∈ Σ, δ(A, a) ∩ F = ∅

Amin[1] = NULL
ELSE

Amin[1] = min{a ∈ Σ | δ(A, a) ∩ F 6= ∅}
FOR i ← 2, . . . , n

FOR each A ∈ Q
min = NULL
FOR each B ∈ Q and minimal a ∈ Σ such that B ∈ δ(A, a)

IF Bmin[i− 1] 6= NULL
IF aBmin[i− 1] < min OR min = NULL

min ← aBmin[i− 1]
Amin[i] = min

RETURN {Amin | A ∈ Q}

We assume that the complexity of comparison of two words of length n is in the
order of the position of the �rst index where the words di�er. We can store the
NFA as an adjacency list, keeping track of the edge with the minimal character
between any pair of states, which adds constant time and linear space to the
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Fig. 1. δ(Ai, ai) = {B1, B2, . . . , Bk} for all distinct ai.

implementation of the NFA. Therefore, the running time of minWordMäkinen
is independent of the alphabet size.

Theorem 1 The algorithm minWordMäkinen uses Θ(sn) space and Θ(s2n2)
operations in the worst case.

PROOF. The two expensive operations are concatenation and comparison of
words. Concatenation of words can be performed in constant time by chang-
ing the mode of storage: Instead of storing a word w of length i in Amin[i],
store the pair (a,B) such that w = aBmin[i − 1]. With this modi�cation,
minWordMäkinen uses Θ(sn) space.

The time complexity of comparing two words of length n is O(n). The number
of symbols compared throughout the algorithm is O(n2). Since the states of
an NFA can form a complete graph, the worst case running time is O(s2n2).
This bound is reached on the NFA in Figure 1.

To �ll in Amin
j [i], which represents the minimal word of length i starting at

state Aj, the minimal words of length i− 1 starting at states B1, B2, . . . , B s−2
2

are compared. The minimal word of length i− 1 starting at state Bl is 0i−2l.
Therefore, comparing each pair of minimal words requires i − 1 steps, and
there is a total of s−2

2
− 1 comparisons. So �lling all the tables Amin

i takes
Θ(s2n2) operations.

The algorithm minWordMäkinen �nds the minimal word of length n in lin-
ear time on DFAs, since the determinism causes all words compared by the
algorithm to di�er on the leftmost character.

In all variations of Mäkinen's algorithm, to determine if a state is i-complete we
check if Amin[i] is not NULL. To use minWordMäkinen with enumCrossSection
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and enum, store the sets of states S0, S1, . . . , Sn−1 on the state stack and then
invoke nextWord. We know that a cross-section has been fully enumerated
when the state stack is emptied, that is, when nextWord returns NULL. We
call this the enumCrossSection cross-section termination method. Mäkinen
introduces an alternative method for determining when a cross-section has
been fully enumerated. In addition to �nding the minimal word, his algorithm
�nds the maximal word in the cross-section in a method similar to �nding
the minimal word. When the maximum word in the cross-section is found we
know that the cross-section has been fully enumerated. We call this method
Mäkinen's cross-section termination method.

When enumCrossSection is used with minWord replaced by minWordMäki-
nen and Mäkinen's cross-section termination method, we get the algorithm
crossSectionMäkinenI. When instead of Mäkinen's cross-section termination
method the enumCrossSection cross-section termination method is used, we
get the algorithm crossSectionMäkinenII. Similarly, enumMäkinenI is enum
with minWord replaced by minWordMäkinen and Mäkinen's cross-section ter-
mination method. The function enumMäkinenII is the same as enumMäkinenI,
except that it uses the enumCrossSection cross-section termination method.

Consider Mäkinen's cross-section termination method. Finding the maximal
words adds an overhead of Θ(s2n2) in the worst case and Θ(sn) in the best
case. The enumCrossSection cross-section termination method recognizes that
a cross-section has been enumerated when the �rst character of the last word
found cannot be replaced. This takes Θ(s2n) time in the worst case and con-
stant time in the best case. Recall that the output size, t, is the total number
of characters over all words enumerated by an algorithm. With either termi-
nation method, once the �rst word in the cross-section is found, the rest of
the work is O(σs2t). Therefore, crossSectionMäkinenI and crossSectionMäki-
nenII use O(s2n2 +σs2t) operations. The di�erence in the best and worst case
performance between these two versions is signi�cant for practical purposes,
as will be discussed in Section 6.2.

Theorem 2 The algorithms crossSectionMäkinenI and crossSectionMäkinenII
use O(s2n2 + σs2t) operations.

In the algorithms enumMäkinenI and enumMäkinenII, after enumerating the
nth cross-section we have a table Amin[1 · · ·n] for each state A. To improve
the performance of these algorithms, when minWord is called for n + 1, we
reuse these tables, extending the tables by index n + 1. Therefore, each call
to minWord(i, S) costs O(s2i). Finding the rest of the words in the cross-
section costs O(σs2t). For each empty cross-section, the algorithm does O(s2)
operations. Therefore, enumMäkinenI and enumMäkinenII have O(σs2t + s2e)
operations, where e is the number of empty cross-sections found throughout
the enumeration.
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Theorem 3 The algorithms enumMäkinenI and enumMäkinenII are O(σs2t+
s2e), where e is the number of empty cross-sections encountered throughout the
enumeration.

4 Lookahead-Matrix Algorithm

To �nd the minimal words of length n, Mäkinen's algorithms �nd the minimal
words of lengths 1 through n − 1. An alternative approach for �nding the
minimal word of length n is to generate the characters of the word one at a
time, while avoiding going down paths that would not lead to a �nal state
within the required number of transitions. To do so, we need a method of
quickly determining whether a word of length i can be completed to a word
of length n in n− i steps.

Given an NFA, we precompute M , the adjacency matrix of the NFA; Mp,q = 1
if there is a transition from state p to state q, and Mp,q = 0 otherwise. Then
compute M2,M3, . . . , Mn−1 using boolean matrix multiplication. Observe that
M i

p,q = 1 if and only if there is a path from state p to state q of length exactly
i. Note that M0 is the identity matrix.

To �nd the minimal word of length n, �nd the set of (n− 1)-complete states,
S1, reachable from the start state on the minimal possible symbol a1. Then
�nd the set of (n− 2)-complete states, S2, reachable from any state in S1 on
the minimal symbol. Continue this process for a total of n iterations. Then
a1a2 · · · an is the minimal word of length n. The algorithm minWordLM(n,N )
�nds the minimal word of length n starting from a state in the set of states
on top of the state stack S and ending at a �nal state, or determines that no
such word exists. To �nd the minimal word of length n accepted by N , place
S0 = {q0} on the state stack S and call minWordLM.

Algorithm 5 minWordLM(n,N )
INPUT: A nonnegative integer n and an NFA N .
OUTPUT: The minimal word of length n accepted by N . Updates state stack S for
a potential subsequent call to minWord or nextWord.

Compute M,M2, . . . ,Mn, if they have not been precomputed
S0 = top(S)
IF Mn

q,f = 0 for all f ∈ F, q ∈ S0

return NULL
w = empty word
FOR i ← 0, . . . , n− 1

ai+1 = min(a ∈ Σ | ∃u ∈ Si, f ∈ F where Mn−1−i
v,f = 1 for some v ∈ δ(u, a))

w = wai+1

Si+1 = {v ∈ ∪u∈Siδ(u, ai+1) | Mn−1−i
v,f = 1 for some f ∈ F}
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IF i 6= n− 1
push(S,Si+1)

return w

Since the matrices require O(s2n) space, minWordLM uses O(s2n) space. Find-
ing each character of the minimal word can be implemented in a way that
uses O(s2) operations. The standard matrix multiplication algorithm is O(s3).
Strassen's matrix multiplication algorithm has O(s2.81) operations [6]. The
best bound on the matrix multiplication problem is O(s2.376) [2]. All other op-
erations in the algorithm cost O(s2n). Therefore, minWordLM can be made to
run in O(s2.376n) operations. However, the matrices have to be unreasonably
large before the di�erences in these multiplication methods become apparent
in practice.

Theorem 4 The algorithm minWordLM �nds the minimal word of length n
in O(s2.376n) time and O(s2n) space.

Note that minWordLM can be easily modi�ed to �nd the maximal word of
length n. In the bit-complexity model, minWordMäkinen is quadratic in n.
The algorithm minWordLM is linear in n in the bit-complexity model. Theorem
3.2 of [4] states that the minimal and maximal words of length n in a regular
language can be found in linear time in n in the unit-cost model. The algorithm
minWordLM proves that this is also true in the bit-complexity model.

Replace minWord by minWordLM in nextWord and use the matrices to deter-
mine i-completeness to get the method nextWordLM. Then using nextWordLM
instead of nextWord, we get modi�ed versions of enumCrossSection and
enum, which we call crossSectionLM and enumLM, respectively. Looking for
the minimal word costs O(s2.376n + σsn) and �nding all consecutive words
costs O(σs2t). Therefore crossSectionLM costs O(s2.376n + σs2t).

Theorem 5 The algorithm crossSectionLM uses O(s2.376n+σs2t) operations.

If an empty cross-section is encountered in enumLM, the algorithm performs
O(s2.376) operations to determine that. Therefore, enumLM uses O(s2.376(m +
e) + σs2t) operations, where e is the number of empty cross-sections en-
countered during the enumeration. Note that if the total number of cross-
sections encountered by the algorithm is c, then the running time of enumLM
is O(s2.376c + σs2t).

Theorem 6 The algorithm enumLM uses O(s2.376(m+ e)+σs2t) operations,
where e is the number of empty cross-sections encountered throughout the enu-
meration.
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5 Grail Enumeration Algorithm

The symbolic computation environment Grail+ 3.0 has an fmenum function
that �nds the m lexicographically �rst words accepted by an NFA. Consider
the potentially in�nite tree of paths that can be traversed on an NFA. The
function fmenum performs breadth �rst search (BFS) on that tree until the
required number of words is found. More precisely, it looks for all words of
length n by searching all paths of length n starting at the start state, distin-
guishing paths that terminate at a �nal state. It searches for words of length
n + 1 by completing the paths of length n. Based on the Grail algorithm, we
present a cross-section enumeration algorithm crossSectionBFS.

Let the nth NFA-cross-section be the set of all words appearing on paths
of length n of an NFA that start at the start state. Given all words in the
(n − 1)st NFA-cross-section and the ends states of the corresponding paths,
nextCrossSection �nds all words in the nth NFA-cross-section as well as the
end states of the corresponding paths. To �nd all words of length n accepted
by an NFA, fmenum �nds the words in the nth NFA-cross-section and selects
all words for which there is a path that ends at a �nal state.

Algorithm 6 nextNFACrossSection(N , prevSec, prevSecStates)
INPUT: NFA N . The set, prevSec, of all words of some length l ≥ 0 that occur on
paths in N starting at s0. An array, prevSecStates, where prevSecStates[w]= δ(q0, w)
for al w ∈ prevSec.
OUTPUT: Returns the pair (nextSec, nextSecStates), where nextSec is the set of all
words in L(N) of length l + 1 and nextSecStates[w]= δ(q0, w) for all w ∈ nextSec.

nextSec = ∅
FOR i ← 1, . . . , size(prevSec)

currWord = prevSec[i]
currNodes = prevSecStates[currWord]
FOR each currNode in currNodes

FOR each edge adjacent to currNode
newWord = currWord + value(edge)
IF newWord 6∈ nextSec

nextSec = nextSec ∪ newWord
nextSecStates[newWord] = ∅

nextSecStates[newWord] = nextSecStates[newWord]
∪ destination(edge)

RETURN (nextSec, nextSecStates)

Algorithm 7 crossSectionBFS(n, N )
INPUT: A nonnegative integer n and an NFA N .
OUTPUT: Visits all words of length n accepted by N in lexicographical order.
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FOR each state in N
sort outgoing edges

words = ∅
emptyWord = ""
crossSec = {emptyWord}
crossSecStates[emptyWord] = {q0}
IF n = 0

IF q0 ∈ F
visit emptyWord

ELSE
FOR i ← 1, . . . , n

(crossSec, crossSecStates) = nextNFACrossSection(N, crossSec,
crossSecStates)

sort(crossSec)
FOR each word in crossSec

IF crossSectionStates[word]∩F 6= ∅
visit word

The BFS enumeration algorithm, enumBFS, calls crossSectionBFS until the
required number of words is found. When we refer to our implementation of
the BFS enumeration algorithm we call it enumBFS and when we refer to the
original Grail implementation, we call it fmenum.

We found a number of bugs in fmenum. The function does not always display
words in the cross-sections in radix order (equivalently, lexicographic order).
When asked to enumerate the �rst two words accepted by the NFA in Fig-
ure 2(a), the following input to fmenum results in an output of 1 followed by
a 0.
(START) |− 0
0 1 1
0 0 2
1 −| (FINAL)
2 −| (FINAL)

In addition, fmenum does not always display all words it should. When fmenum
is called with n = 1000 and a DFA that accepts words over (0 + 1)∗ such that
the number of 1s is congruent to 0 mod 3 (see Figure 2(b)), fmenum is missing
11000000000001.

Without explicit sorting of the words, words found by BFS algorithms will
likely not be visited in radix order. Sorting the edges based on their alphabet
symbol reduces the frequency of the problem, but does not eliminate it. If
we call enumBFS on the NFA in Figure 2(c), then while enumerating words
of length 2 we attempt to complete the string �0�, which was found while
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(a) (b) (c) (d)

Fig. 2.

enumerating the previous cross-section. Since both states B and C are reached
on the symbol 0, state B may be chosen to complete the word. Thus, the
algorithm �nds �01� before it �nds �00�. To solve this problem, we sort the
words after they are found.

The algorithm crossSectionBFS may do exponential work in n for empty
output. Consider the NFA in Figure 2(d). If we enumerate the nth cross-section
of this NFA for n = 2j + 1, j ≥ 0, the algorithm performs over (2j) · 2j ∈
Θ(n2n/2) operations and has empty output. Note that the NFA in Figure 2(d)
is minimal. On non-minimal NFAs, the running time could be worse. The
running time of the BFS enumeration algorithms depends on the structure
of the NFA. The ith NFA-cross-section contains at most σi words and the
algorithm does O(σs2) operations per word in the ith NFA-cross-section when
enumerating the (i+1)st NFA-cross-section. Therefore, the algorithm performs
O(σis2) operations for the ith NFA-cross-section. Therefore, crossSectionBFS
is O(s2σn). The algorithm enumBFS(m,N ) is bounded by O(s2σk), where
k is the length of the last cross-section examined. Further, k ≤ ms as for
every word enumerated by enumBFS there are at most s empty cross-sections
examined.

Theorem 7 The algorithm crossSectionBFS(n,N ) has O(s2σn) operations.
The algorithm enumBFS(m,N ) has O(s2σk) operations, where k ≤ ms is the
length of the last cross-section examined.

6 Experimental Results

6.1 Implementation

We discussed the following algorithms: enumMäkinenI, crossSectionMäkinenI,
enumMäkinenII, crossSectionMäkinenII, enumLM, crossSectionLM, enumBFS,
and crossSectionBFS. We also introduce the naive algorithm, enumNaive,
which generates words over Σ∗ in radix order and checks which are accepted by
the NFA, until the required number of words is found or it is determined by the
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Fig. 3. NFA Lm.

enumCrossSection cross-section termination method that the language is �-
nite. The algorithm enumNaive has a corresponding cross-section enumeration
algorithm, crossSectionNaive, that generates all words over Σn in radix order
and checks which are accepted by the NFA. The running time of crossSec-
tionNaive is O(s2σn), since the algorithm may have to do up to s2 operations
for every character in a word in Σn. The algorithm enumNaive(m,N ) costs
O(s2σk), where k is the length of the last word examined by the algorithm. As
in enumBFS, k ≤ ms. We implemented these algorithms and compared their
performance. We represent NFAs as adjacency-lists. To improve performance,
edges adjacent to each vertex are sorted based their associated Σ symbols.

6.2 Performance Comparison

A large body of tests was randomly generated. Most tests follow the following
format: 100 NFAs were randomly generated with a bound on the number of
vertices and alphabet size. The probability of placing an edge between any
two states was randomly generated. The probability of any state being �nal
or the number of �nal states was randomly generated within a speci�ed range.
The algorithms were tested on NFAs with di�ering number of states, varying
edge densities, various alphabet sizes, and di�erent proportions of �nal states.
Each algorithm was run between 1 and 10 times on each NFA, and the average
running time was recorded.

In addition to randomly generated tests, the algorithms were tested on the
DFA that accepts the language 1∗, the DFA that accepts the language (0+1)∗,
and some NFAs from the set L = {Lm | m ≥ 2}, found in Figure 3. The NFAs
in L are important because they take quadratic time on crossSectionMäkinen.

The naive algorithms perform reasonably well on small NFAs when the al-
phabet is of size less than 3, but even in these cases they tend to be slower
than the other algorithms. With an alphabet size greater than 3, the naive
algorithms are unreasonably slow. For large values of s, the naive algorithms
are very slow, even on NFAs over the binary alphabet. The only case found in
which the naive algorithms outperform the other algorithms is on NFAs with
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a unary alphabet where all states are �nal.

The BFS algorithms tend to perform well on small NFAs for small values
of n. The algorithms enumBFS and crossSectionBFS outperform the other
enumeration algorithms on 1∗, and crossSectionBFS outperforms the other
algorithms for L2 and L9 (see Figure 3). In addition, the BFS algorithms are
faster than the naive algorithms. However, enumBFS and crossSectionBFS
are signi�cantly slower than both Mäkinen and lookahead-matrix on most
test cases.

Mäkinen and lookahead-matrix were slower than BFS on the language 1∗,
for which Mäkinen and lookahead-matrix are particularly poorly suited. After
each minimal word is found, the Mäkinen and lookahead-matrix algorithms go
through the state stack searching for a character that can be replaced, �nding
none. Both algorithms end up performing a lot of redundant work on this
particular language.

The e�ciency of Mäkinen and lookahead-matrix on any NFA N can be esti-
mated by the average length of the common pre�x between two consecutive
words in the same cross-section of L(N). Therefore, Mäkinen and lookahead-
matrix are particularly well suited for dense languages. This is con�rmed in
practice, as the performance of the Mäkinen and lookahead-matrix algorithms
improves as the alphabet size increases. Performance improves further when,
in addition to a larger alphabet, the number of edges or �nal states increases.

The top competing algorithms on almost all randomly generated tests are
MäkinenII and lookahead-matrix. As the alphabet size increases, the di�erence
between the e�ciency of the algorithms decreases. On average, MäkinenII
performs best. The performance of lookahead-matrix is consistently close to
that of MäkinenII. Lookahead-matrix overtakes MäkinenII on some test cases
where there is only a single �nal state.

As expected, MäkinenII is signi�cantly more e�cient than MäkinenI on NFAs
with unary alphabets, due to the overhead in MäkinenI of searching for the
maximal word in each cross-section where all cross-sections have a unique
element. MäkinenII is also much more e�cient on NFAs corresponding to
sparse graphs. While on a few other test cases there is a signi�cant disparity
in the performance of the algorithms, their performance is similar on average,
with MäkinenII performing a little better on most tests.

The algorithm minWordMäkinen is O(s2n2) in the worst case and O(sn) in the
best case. We implemented the lookahead-matrix algorithms with the stan-
dard O(s3) matrix multiplication algorithm. Therefore, our implementation
of minWordLM is O(s3n). Finding the rest of the words is O(s2t) for both
algorithms. All other operations in the algorithms are identical. The perfor-
mance di�erence in the average case can be explained by the additional factor
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of s in lookahead-matrix when searching for the minimal word of length n
and the hypothesis that the worst case of O(s2n2) for minWordMäkinen is not
usually reached on random NFAs. This provides a theoretical basis for the
proposition that the slightly faster average performance of crossSectionMäki-
nenII and enumMäkinenII over that of the lookahead-matrix algorithms is not
symptomatic of a larger problem with the lookahead-matrix algorithms.

On NFAs where Mäkinen's cross-section enumeration algorithms are quadratic
in n, crossSectionLM performs signi�cantly better than Mäkinen's cross-section
algorithms. On L9, crossSectionLM runs over 50 times faster than crossSec-
tionMäkinenI and crossSectionMäkinenII. Note also that it is su�cient for an
NFA to have an NFA in L as a subgraph in order for the Mäkinen algorithms
to have a quadratic running time in n.

From these results, we �nd that on typical data, Mäkinen algorithms with the
enumCrossSection cross-section termination method tend to perform slightly
faster than all other algorithms. However, in applications where a bounded
worst case running time is essential, the lookahead-matrix algorithms are
preferable.

The tests were run on Microsoft Windows XP Professional Version 2002 Ser-
vice Pack 2, AMD Sempron(tm) 1.89 GHz, 1.00 GB of RAM.
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8 Appendix

The following tables list some of the running times of the algorithms. The
�rst table lists the results of the cross-section enumeration algorithms and the
second lists the results of the enumeration algorithms. When an �x� appears,
the test case has not been run to completion due to an unreasonably high
running time.
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