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ABSTRACT

One important challenge of current search engines is to sat-
isfy the users’ needs when they provide a poorly formulated
query. When the pages matching the user’s original key-
words are judged to be unsatisfactory, query recommenda-
tion techniques are used to propose alternative queries and
alter the result set. These techniques search for queries that
are semantically similar to the user’s original query, often
searching for keywords that are similar to the keywords given
by the user. However, when the original query is sufficiently
ill-posed, the user’s informational need is best met using en-
tirely different keywords, and a substantially different query
may be necessary.

We propose a novel approach that is not based on the
keywords of the original query. We intentionally seek out
orthogonal queries, which are related queries that have (al-
most) no common terms with the user’s query. This allows
an orthogonal query to satisfy the user’s informational need
when small perturbations of the original keyword set are
insufficient. By using this technique to generate query rec-
ommendations, we outperform several known approaches,
being the best for long tail queries.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation
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1. INTRODUCTION
Over the last seventeen years there has been enormous

progress on Web search. Starting from the text-based rank-
ing algorithms of 1994, we now have complex ranking algo-
rithms that use hundreds of features and many functionali-
ties based on usage data, such as spelling correction, query
completion and query recommendation. Due to these ad-
vances, search engines usually satisfy a user’s informational
need on well-formulated queries. However, an important
remaining challenge is to satisfy the users’ informational
need when they provide vague, poorly formulated or long
tail queries.

When the pages matching the user’s original keywords
are judged to be unsatisfactory, query recommendation al-
gorithms are a common method for helping users find the
information they need. These algorithms aim to provide
queries that are, at least somewhat, similar to the original
[2].

Another approach is to use query expansion [2], where the
goal is to find keywords that, while syntactically different to
varying degrees, have the same semantics as the keywords
in the original query. Query recommendation can be seen as
query expansion where we limit the query universe to those
queries that have been previously input by some user.

Using these approaches, the new result set is a perturba-
tion of the original result set. When the query is sufficiently
well composed a small perturbation would be sufficient; in
those cases, there is a highly ranked page relevant to the
user’s needs that appears in the result set of the new query,
whereas the result set of the original query did not contain
such results. Traditional approaches to query recommenda-
tion play an important and necessary role in helping correct
queries that require minor adjustment.

However, users cannot always pick the most appropriate
keywords. This is not surprising, because some queries are
launched precisely because users wish to learn a subject with
which they have little familiarity. When the query is suffi-
ciently ill-posed, the user’s informational need is best met
using entirely different keywords, and a small perturbation
of the original result set is bound to fail. Interestingly, in
this case, the higher the query similarity used for the per-
turbation, the less likely that the recommendation would
succeed.

We propose a new approach that does not directly rely on
the original keyword set, and indeed does not rely on queries
that are syntactically similar to the original. We intention-



Figure 1: A graphical illustration of the difference between traditional query recommendation and orthogonal
query recommendation. The dots represent webpages. The oval represents the set of pages that are relevant
to the user’s needs. The pages containing the user’s keywords are represented in the green, nearly-horizontal
stab. Results sets using traditional query recommendation are shown using the dashed stabs. An orthogonal
result set is represented using the orange stab, appearing perpendicular to the original result set.

ally seek out orthogonal queries, which are related queries
that have no common terms with the user’s query. That is,
orthogonal queries contain terms that are syntactically dif-
ferent from the terms in the original query, but that are still
semantically similar. Hence, they provide insightful alter-
native interpretations that are not reachable by using small
variations on the original keyword set.

Orthogonal query recommendation is complementary to
traditional query recommendation, each technique may suc-
ceed when the other fails. Traditional approaches explore
adjacent meanings of the user’s query, whereas orthogo-
nal query recommendation considers relevant interpretations
that are more distant. See Figure 1 for an illustration of
our main idea. Orthogonal queries tap into the space of
relevant pages in a radically different way than is possible
through traditional query recommendation techniques, al-
lowing them to detect high quality pages that cannot be
found by using previous techniques. Observe that if the
original query is sufficiently ill posed, no small perturbation
will succeed in capturing high value pages. In addition, an
orthogonal query can access the user’s informational need
while consisting of keywords that are mostly distinct from
those in the original query.

The challenge is to find orthogonal queries in a compu-
tationally efficient manner that proves useful in practice.
We find orthogonal queries by taking advantage of the vast
amounts of data that search engines collect, finding queries
with low result similarity in an ad-hoc query recommenda-
tion answer cache. The use of an answer cache enables us
to take advantage of temporal locality, and hence the query
recommendations automatically reflect current events and
trends, thus further increasing the likelihood that the user’s
informational need is met.

We illustrate the effectiveness of this approach by propos-
ing a query recommendation method derived from these ob-
servations, and demonstrate its effectiveness on a large query
log against other existing query recommendation techniques.
As a result of our evaluation, to the best of our knowledge,
we present the most extensive comparison of query recom-
mendation algorithms.

Finally, we perform a user study using the standard TREC
Web diversification task test bed. We compare orthogonal
query recommendation against six previous approaches, in-
cluding several that are substantially more computationally
extensive. Orthogonal query recommendation outperforms
all previous methods. In addition, our method outperforms
previous approaches by a substantial margin on queries that
were not previously seen.

The rest of this paper is organized as follows. In Section 2,
we discuss prior approaches to query recommendation. In
Section 3, we introduce our notion of orthogonal queries in a
formal manner and we discuss how we compute those queries
using a particular notion of query similarity. In Section 4,
we evaluate the effectiveness of our query recommendation
algorithm with respect to others and conclude in Section 5.

2. PREVIOUS WORK
Query recommendation algorithms address the problem of

recommending good queries to Web search engine users, and
thus the solutions and evaluation metrics are tailored to the
Web search domain. Recently, many different approaches
have arisen to solve this problem, but they all share a com-
mon element: the exploitation of usage information recorded
in query logs [13].

One subset of these recommendation algorithms use clus-
tering to determine groups of similar queries that lead users
to related documents [14, 1]. In the case of [1], the recom-
mended queries might have completely different terms to the
original query, like the algorithm proposed in this paper, as
they use term similarity over of clicked answers (and not the
queries). Additional approaches include exploiting chains of
queries stored in query logs [10], or improving the retrieval
accuracy of difficult queries [11].

Baeza-Yates and Tiberi [3] exploit click-through data as a
way to provide recommendations. The method is based on
the concept of Cover Graph (CG). A CG is a bipartite graph
of queries and URLs, where a query q and an URL u are
connected if a user issued q and clicked on u that was an
answer for the query.



Another approach, similar to the previous one, called user
frequency-inverse query frequency (UF-IQF), was introduced
by Deng et al. [9] and is based on entropy models. The same
year, Silvestri et al. [7] introduced a new recommendation
algorithm: search short cuts (SC).

Zaiane and Strilets [15] exploit query traces to find similar
queries (SQ), the queries with similar terms and results are
scored higher,which is the opposite of our method.

The last four algorithms described above (CG, UF-IQF, SC,
SQ) are used as baselines in our experimental comparison.
Finally, as part of our user study, we compare our orthogo-
nal query approach with two other graph based query rec-
ommendation algorithms that are not that efficient: Query
Flow Graph (QFG) [5] and Term-Query Graph (TQG) [6].

Our method differs from previous approaches in that we
deliberately seek out queries that are only slightly similar to
the user’s original query. In this way, we avoid the pitfall
of recommending queries that are simple reformulations of
the original, as this would do very little to bring the user
closer to their informational need if the original query was
poorly formed or has few results, as is the case with long
tail queries.

3. ORTHOGONAL QUERIES
In our model, the objective of a search engine is to retrieve

at least one highly ranked page that is relevant to the user’s
needs. The purpose of an orthogonal query is to satisfy
the user’s information need when they are not met by the
original results.

Formally, let R denote the set of web-pages that are rele-
vant to the user’s needs. Let K denote the set of pages that
contain the keywords comprising the user’s query. Search
engines rely on the existence of some highly ranked pages in
R ∩K, since these would be the top results returned to the
user.

As such, the main limitation of the current approach to
searching is its restricted capacity to access pages in R. We
introduce orthogonal queries as a means of accessing R in a
manner that is not as dependent on the particular keyword
choices made by the user.

We refer to K as a stab of R. An orthogonal stab is a set O
such that O ∩K is small. In particular, we are interested in
orthogonal stabs so that R∩O contains some highly ranked
pages. See Figure 1 for an illustration. Orthogonal results

denote pages in O that do no occur in K.
Orthogonal queries and their results may be useful when

R ∩ K is unsatisfactory; for instance when R ∩ K does not
contain enough highly ranked pages. Orthogonal query rec-
ommendation is also useful when the top results in R ∩ K
address the same interpretation of the user’s query, allowing
orthogonal queries to capture alternative interpretations (or
in other words, diversify the results). Orthogonal queries
and their results may satisfy the user information needs on
poorly formulated queries, by going beyond the scope of the
provided keywords. These results are also able to provide
relevant information that is entirely new to the user, where
the user could not have searched for it directly.

To characterize orthogonal queries we use a similarity
measure based in the query terms. Let the term overlap

between queries p and q be

termOverlap(p, q) =
|terms(p)∩ terms(q)|

|terms(p)∪ terms(q)|
.

Query 1 Query 2 T.O. R.O.

european+rabbit European rabbit 1 0.575
lyrics office space office space lyrics 1 0.4084

car-price bluebook cars 0 0.06
discount travel cheap airfares 0 0.105
Daisy Duke “catherine bach” 0 0.02

Table 2: Examples of query pairs and their Term
Overlap (T.O.) and Result Overlap (R.O.) scores.

Using this similarity measure, we can define initially orthog-
onal queries as those having termOverlap equal to zero.
However, we will relax this definition later and allow orthog-
onal queries to have very low termOverlap, i.e. we should
call them quasi-orthogonal.

3.1 Interesting Orthogonal Queries
Our orthogonal query recommendation technique relies on

a measure of similarity that goes beyond keyword compar-
isons, and is at the same time computationally efficient so
that the similarity score can be computed in real-time.

Let resultSet(p) denote the set of URLs returned by a
search engine on query p. The result overlap between queries
p and q is,

resultOverlap(p, q) =
|resultSet(p)∩ resultSet(q)|

|resultSet(p)∪ resultSet(q)|
.

See, for example, Balfe et al. [4].
We found that queries with a large result overlap score

yield results that are similar to the original query’s results,
and thus do not address alternative interpretations. We use
the result overlap score to further determine when a query is
orthogonal, and build a set of interesting orthogonal queries
to be used as recommendations.

In order to find a range of result overlap that leads to
interesting orthogonal queries, we compare result overlap
with term overlap. We first provide a high level description
of the relationship between term overlap and result overlap,
and discuss later how this relationship enables us to identify
a range of result overlap that leads to orthogonal queries.

Very high values of result overlap tend to indicate that
the queries are composed of similar terms. The most similar
queries are slight syntactic variants composed of the same

terms. For instance, the queries european+rabbit and Eu-

ropean rabbit have result overlap 0.575. As our algorithm
compares the top 100 results from both queries, a result
overlap score of 0.575 indicates that 73 of the top 100 results
match. Queries that are word permutations of each other,
as in lyrics office space and office space lyrics also have a
high result overlap score, in this case 0.4084. Many other
queries with high result overlap score often have significant
overlap in their term bags.

When both the result overlap and term overlap scores are
high, incorporating highly ranked results from such a query
into the original result set does not significantly alter the
original result set. Hence, to find pages that satisfy the
needs of users when their informational needs are not met
by the original highly ranked results, we look for similar
queries (according to the result overlap score) that include
entirely different keywords. Indeed, the most interesting re-
sults occur at a low range of result overlap. Surprisingly, we
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Figure 2: Result overlap versus average term overlap in a query log of 5, 000 queries. At the right we show
the result overlap values in the range (0, 1], while at the left the result overlap values in the range (0, 0.2].
The lines represents the moving average of period two, and the Bézier curve of degree 352. We also show the
standard deviation σ. The graphs show a positive correlation between result and term overlap.
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Figure 3: Term overlap versus average result overlap in a query log of 5, 000 queries. At the right we show
the average result overlap values in the range (0, 1], while at the left the values in the range (0, 0.2]. The lines
represents the moving average of period two, and the Bézier curve of degree 36. We also show the standard
deviation σ. The graphs show a positive correlation between results and term overlap.

did not find an instance where two queries have result over-
lap beyond score 0.01 and yet are semantically dissimilar.

The result overlap measure of query similarity can de-
tect semantic similarity when there are no common terms,
without the use of complicated natural language processing
techniques. For example, the queries students with read-

ing difficulties and dyslexia help have result overlap
0.0102, and car-price and bluebook cars have a 0.06 re-
sult overlap. A surprising relationship was caught in the
comparison of the queries Daisy Duke and "Catherine Bach"

with a result overlap value of 0.02. Further investigation re-
vealed that Catherine Bach played character Daisy Duke in
The Dukes of Hazard.

3.2 Finding Interesting Orthogonal Queries
Now we perform a more formal comparison of result over-

lap with term overlap in order to identify the most appro-
priate range of result overlap for finding orthogonal queries.
For this we compute the result overlap and term overlap
scores for each distinct pair of queries in a query log of
5, 000 entries. We computed term overlap while ignoring
very common stop words (such as “a” and “the”), otherwise
many dissimilar pairs of queries would have high term over-
lap. In addition, we reduce all letters to lower case, and treat
words as sequences of alpha-numerical characters (i.e., then
european+rabbit and European rabbit have term overlap 1.)

The Pearson correlation coefficient between result overlap
and average term overlap is 0.567(352 data points), indi-
cating a positive correlation. Figure 2 shows result overlap
values in the range (0, 1] and (0, 0.2] with the corresponding
average term overlap values. The lines in Figure 2 represent
a moving average with a period of two, and a Bézier curve
of degree n. We also report the standard deviation of term
overlap for each result overlap. Since we were using a real
query log, it is not surprising that the number of queries
decreases as result overlap increases.

We obtain further evidence of the positive correlation be-
tween the two measures of similarity by looking at term over-
lap versus average result overlap. The Pearson correlation
coefficient between them reveals a strong positive correlation
of 0.686 (36 data points). Figure 3 shows term overlap val-
ues with the corresponding average result overlap values in
the range (0, 1] and (0, 0.2], similarly to the previous figure.

We would like to identify a range of result overlap where
term overlap is low, as most queries have very few terms.
In a study of 285 million Internet users, we found that over
87% of search queries consist of 4 or fewer terms [12]. A
term overlap score below 0.333, on two queries of length
at most 4, indicates that the queries overlap on at most one
term. With the goal of introducing as little noise as possible,
and only presenting those results that are most likely to be
orthogonal to, and not similar to, the results of the original
query, we want to avoid having large term overlap. To this



end, we set a threshold so that we expect to have at most
one overlapping term.

Taking into account the size of the Web, and thus the
number of possibilities of the first 100 results, a non-zero re-
sult overlap is actually very meaningful. Indeed, the proba-
bility of a false match can be estimated in the range of 10−5

to 10−9. We found that in practice a non-zero result overlap
score in most cases represents some semantic similarity.

We would also like the queries to have little term overlap,
so that the corresponding result set is orthogonal. Thus,
we would like the term overlap to be below 0.333. Figure 2
(right) shows that until result overlap of 0.06, the running
average is dominantly below 0.333.

Hence, we chose to use queries with a result overlap score

in the range (0, 0.06] to find interesting orthogonal queries.

Note that this threshold depends on the data set and
should tuned for each search engine depending on the query
stream.

3.3 Algorithm
To find orthogonal queries we use result overlap scores to

compute query similarity between an incoming query and all
queries currently in an ad-hoc answers cache. As just dis-
cussed, we have determined that a result overlap similarity
score in the interval (0, 0.06] is most beneficial for finding
good orthogonal queries. Thus, we say that in practice a
query A is orthogonal to query B if its result overlap simi-
larity score is within this range.1 Given a user’s query, A,
we construct the set of all such orthogonal queries B from
the cache.

By using this cache, our algorithm is only looking at queries
that have been issued within the recent past. This gives our
algorithm two desirable properties. First, it can be com-
puted online and efficiently [8] while queries are being exe-
cuted, as we would not be able to compute similarity scores
and present results for incoming queries if we had to run
our algorithm over all previously seen queries. Second, and
perhaps more importantly, our algorithm reacts to tempo-
ral changes in users’ query habits. If users are currently
interested in searching for Michael Jackson died, instead
of Michael Jackson thriller, the orthogonal queries will
reflect this fact.

4. SESSION BASED EFFECTIVENESS
In this section we aim to evaluate the effectiveness of our

query recommendation algorithm with respect to others by
using a large query log. Our idea is to use the sessions
extracted from a query log for the evaluation purpose, where
a session is a sequence of queries q1, q2, ..., qn submitted by
a user, in a fixed amount of time t, which we will vary. That
is, our training data is based in real users and not expert
users.

To the best of our knowledge, this is the first time that
a large scale analysis has been performed to evaluate the
effectiveness of query recommendation algorithms.2 In fact,
while the use of a large scale query log has been widely
proposed for training purposes, evaluation is usually done
based on user judgements. We generated 7 million query

1Thus, in practice, orthogonal queries are quasi-orthogonal
queries in both, term overlap and result overlap.
2In [7, 9, 3] automated approaches are proposed, but the
evaluation was based on samples of a few hundred queries.

recommendations for evaluation purposes, with more than
2.4 million (600 thousand for each baseline) of them for the
comparison itself.

We will proceed by describing our data set, the experi-
mental setup, the best cache policy, and the effectiveness
of orthogonal query recommendation when compared with
other state-of-the-art query recommendation algorithms.

4.1 Experimental Setup
We used a large search engine query log containing ap-

proximately 22 million queries from USA. We used 80% of
the query log for training purposes and the rest for testing.
In particular, we sessionized the testing set by using four
different values for t = 1, 10, 20, and 30 minutes. We then
consider only the satisfied sessions with retype, that is, ses-
sions where the last query, qn, is the only query that has
received a click, and n ≥ 2 (i.e. the first query of the session
was not satisfactory). Furthermore, we removed sessions
where qn is not present in the training set. Table 3 reports
more detailed statistics of the query log.

Number of queries 21, 562, 727
Number of queries with frequency = 1 4, 467, 362
Test corpus - number of queries 4, 312, 545
Training corpus - number of queries 17, 250, 182
Number of unique URL downloaded 34, 228, 300
Test Session of 1 min S-1min 99, 833
Test Session of 10 min S-10min 157, 747
Test Session of 20 min S-20min 170, 720
Test Session of 30 min S-30min 177, 183

Table 3: Statistics of the query log.

The satisfied sessions with retype are interesting because
they simulate a real case where a user would need a rec-
ommendation. In fact, in this type of session, the user is
initially unsatisfied by the URL results of q1, and conse-
quently, s/he tries to find an alternative query which ends in
a click. We base our evaluation methodology on predicting
the last query of the session. Predicting the exact last query
by simply using the first query of a session is very difficult.
Consider that even a single character variation between the
recommended query and the last query of a session will not
be considered a useful recommendation.

For evaluation purposes, we adopted the average success

at rank k , denoted S@k, which we define to be the prob-
ability of finding at least one relevant query among the
top-k recommended queries. Hence, our ground truth is
very exigent. Formally, given a set of sessions S , a ses-
sion s = (q1, q2, . . . , qn) ∈ S , and a set Rq of recommended

queries for q1, we define Sq@k =

{

1, if {qn} ∩Rq 6= ∅

0, if {qn} ∩Rq = ∅
,

and with |Rq | = k, we define S@k =
∑

s∈S Sq@k

|S|
.

4.2 Cache Policy
Before describing the effectiveness of orthogonal query rec-

ommendations, we discuss our static cache policy. Our goal
is to keep in the cache those queries that could potentially
be the final query of a satisfied session with retype.

While other query recommendation algorithms can benefit
from the entire query log as training set for recommendation



S-1min S-10min S-20min S-30min

MCQ 55,59 56,98 57,56 57,85
MFQ 53, 08 54, 75 55, 35 55, 64
MFFQS 51, 00 52, 59 53, 12 53, 36
MRQ 34, 56 36, 27 36, 81 37, 08

Table 4: Last session query hits percentage, nor-
malized by the maximum number of hits per session
for an infinite cache. Columns are different types of
sessions, rows the techniques used to fill the cache.

purposes, orthogonal query recommendation is based on a
finite set of queries in the cache. In other words, a query that
is recommended by the orthogonal query recommendation
algorithm is, by definition, in the cache, while the other
recommendation algorithms could potentially recommend a
query that is chosen from the entire training set. Hence, in
this sense our technique is at a disadvantage.

As we discussed in the experimental setup, we want to
predict the last query of a session. Formally, given a set of
queries in cache C, a session s = (q1, q2, . . . , qn) ∈ S , and
a set Rq of recommended queries for q1, we define a cache

hit if qn ∈ C, and a cache miss otherwise. We selected
four different features extracted from the query log: query

freshness, query frequency, query click and last session query

likelihood. Based on the selected features, we define:

• MCQ (Most Clicked Query): The most clicked queries
in the training set are kept in the cache;

• MFQ (Most Frequent Query): The most frequent queries
in the training set are kept in the cache;

• MFFQS (Most Frequent Final Query in Session): The
query training set is sessionized, and we select the final
query of each session. We keep those final queries that
occur most often. Here we use sessions with t = 30
minutes;

• MRQ (Most Recent Query): The most recent queries
are kept in the cache;

To avoid introducing queries into the cache that were not
available during the training of the baseline algorithms, we
use only the training data to determine the best cache policy.
We used 80% of the query log to fill the cache to a particular
size based on each policy, and we sessionized the remaining
20% for cache testing purposes.

Table 4 reports the normalized hit ratio for different cache
policies and session tests by using a cache size of 80, 000
query entries. The normalization factor is obtained by con-
sidering the cache to have infinite size. The cache policy
with the highest hit ratio is MCQ. Thus, the probability of
having the last session of a query in the cache is higher if we
adopt this policy.

Figure 4 shows the percentage of normalized query hits
for different types of cache policies with varied cache sizes.
The larger the cache size, the higher the hit ratio. MCQ is
almost always better than any other cache policy. Sessions
of 1, 10 and 20 minutes follow the same trend.

After discovering that MCQ is the cache policy with the
highest hit ratio (in terms of last query of a session), we fur-
ther investigate the effectiveness of the orthogonal query rec-
ommendation algorithm. We investigate the quality of the
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Figure 4: Percentage of S-30min query hits, normal-
ized by the maximum number of hits reachable with
a cache of infinite size.

Cache size 10, 000 20, 000 40, 000 80, 000
Sessions of 1 minute

MCQ 2.66 3.42 4.22 4.97
MFQ 2.46 3.11 3.80 4.51
MFFQS 2.78 3.40 4.13 4.48
MRQ 0.18 0.36 0.68 1.43

Sessions of 30 minutes
MCQ 1.95 2.52 3.08 3.64
MFQ 1.84 2.29 2.80 3.34
MFFQS 2.04 2.47 3.01 3.42
MRQ 0.14 0.27 0.51 1.05

Table 5: S@10 in percentage of orthogonal query rec-
ommendations for S-1min and S-30min. Columns in-
dicate different cache sizes and rows the different
policies used to fill the cache.

recommended orthogonal queries for different cache policies
and cache sizes.

For each cache policy, the same criteria that was used to
fill the cache is used to impose an order on the orthogonal
queries obtained by our recommendation method.

Table 5 reports the S@10 of orthogonal query recommen-
dations by varying the cache size and the cache policy for
S-1min and S-30min. Almost always, the prediction for short
session times (t = 1 minute) is better. This is probably due
to the fact that by considering a shorter session length, the
probability that the user’s intent changes during the session
is lower. The best cache policy is MCQ with S@10 = 4.97
for S-1min and S@10 = 3.64 for S-30min, with a cache size
of 80, 000 query entries. MFFQS seems to be a good cache
policy for small cache size, with a S@10 = 2.78 for S-1min

and 2.04 for S-30min.
In conclusion, we could say that the best cache policy is

MCQ, as it performs best for short term (S-1min) and long
term prediction (S-30min). We note that using short term
sessions (S-1min), S@10 in percentage of orthogonal query
recommendations for policy MCQ appears to increase by a
constant ( 0.75) as we double the cache size. For longer
term sessions (S-30min), we see a similar trend with a smaller
constant ( 0.56). However, as the number of queries increase
and we reach the long tail, this trend will end.



Sessions S-1min S-10min S-20min S-30min

Overall
UF-IQF 5.87 4.83 4.54 4.40
OQ 4.97 4.07 3.72 3.64
SC 3.46 2.48 2.32 2.25
SQ 1.47 1.05 0.60 0.58
CG 0.64 0.49 0.46 0.43

Unseen queries
OQ 3.54 3.61 3.65 4.16
SC 0.78 0.80 0.79 0.79
SQ 0.74 0.72 0.72 0.71
UF-IQF 0.00 0.00 0.00 0.00
CG 0.00 0.00 0.00 0.00

Table 6: S@10 as a percentage, both for all queries
and for long tail queries. In each case, the techniques
are sorted in order of effectiveness.

4.3 Comparison
Having found that the best cache policy is MCQ, we now

focus on comparing the effectiveness of orthogonal query rec-
ommendations w.r.t. state-of-art algorithms for query rec-
ommendation. Hereinafter, we will adopt a cache of 80, 000
query entries and the MCQ policy for producing orthogo-
nal query recommendations. Before describing our baseline
algorithms, it is worth mentioning that we needed to gener-
ate approximately 600 thousand recommendations for each
baseline. Hence, we selected recommendation algorithms
with low computational cost.

As baselines, we used four different well-known recom-
mendation algorithms: CG (Cover Graph) [3], UF-IQF (User

Frequency-Inverse Query Frequency) [9], SC (Short Cuts)
[7], and SQ (Similar Queries) [15].

Recall that these algorithms use all the queries to find the
best query recommendations and our algorithm only uses the
queries in the cache. Hence, our algorithm is in disadvantage

with respect to all the baselines. However we trade-off this
disadvantage with time efficiency.

Table 6 reports the S@10 as a percentage of orthogonal
query recommendations compared to our baselines, for dif-
ferent test session lengths.3 We report the overall results,
and the results of unseen queries separately. In fact, around
21% (Table 3) of the queries in our query log are unseen
queries (that is, their frequency is one).

Note that the best results are obtained with S-30min, in
the case of unseen queries, and S-1min in the overall case. In
the case of unseen queries, the effectiveness of OQ is higher
than all of the baselines, showing its effectiveness for long
tail queries. Notice that in this case, the second best algo-
rithm is SC and not UF-IFQ, which is not able to provide
recommendation for unseen queries.

The effectiveness of OQ is always higher than CG, SQ and
SC. However, UF-IQF performs better than OQ when we con-
sider the entire set of sessions. We further investigate this
issue by reporting in Table 7 the percentage of the recom-
mended queries that overlap between OQ and our baselines.
That is, what percentage of the recommended queries are the
same. We want to know whether the queries recommended

3Results for S@5 and S@1 were omitted, however we did
not notice any difference of order in terms of effectiveness
between OQ and the baselines.

Sessions S-1min S-10min S-20min S-30min

CG 1% 1% 1% 1%
UF-IQF 14% 14% 14% 13%
SC 5% 5% 5% 4%
SQ 2% 2% 2% 2%

Table 7: Overlap of the successful orthogonal rec-
ommendations w.r.t. the successful baseline query
recommendations. Columns indicate the different
types of session lengths and rows are our baselines.

Judgment useful somewhat not useful

Overall
OQ 20% 25% 55%
TQG 18% 23% 59%
UF-IQF 20% 20% 60%
CG 16% 22% 62%
SC 14% 16% 70%
QFG 13% 12% 75%
SQ 6% 4% 90%

Unseen queries
OQ 25% 8% 67%
TQG 8% 13% 79%
SC 5% 3% 92%
UF-IQF 0% 0% 100%
CG 0% 0% 100%
QFG 0% 0% 100%
SQ 0% 0% 100%

Table 8: User study results, which compare the
effectiveness of OQ with the baseline techniques,
sorted in order of effectiveness (useful + somewhat).

by the classical query recommendation algorithms contain
the orthogonal queries that we recommend. We restrict the
test sessions to the successful sessions of each method. As
we can see, only 14% of the successful recommended queries
of OQ are contained in the successful recommended queries
of UF-IQF. This means that the two recommendation al-
gorithms are almost “orthogonal” in terms of recommended
queries, and therefore they could be combined. The percent-
age of overlap with other baselines is even lower as those are
not very effective; a maximum of 5% with SC, 2% with SQ,
and 1% with CG.

Note that OQ is not always going to be useful. Specifi-
cally, if the user’s original query gives poor results, but their
informational need can only be satisfied by slight variations
on the original query (high result overlap), then OQ will
not detect these queries. On the other hand, because OQ

is the most effective method for unseen queries, in compari-
son with other recommendation algorithms, and as detecting
such queries in the cache is trivial, it would be easy to im-
plement OQ in conjunction with any of the other methods
leading to substantial improvement in overall performance.

4.4 User Study Evaluation
In addition to the automated evaluation shown above,

we also tested the effectiveness of OQ by running a user
study. We experimented with the following methods: OQ,
CG, UF-IQF, SQ, and SC. In addition, we introduced two



other baselines: QFG (Query Flow Graph) [5], TQG (Term-

Query Graph) [6]. QFG and TQG make use of Random Walk

with Restart for query suggestions.
The high computation time of the Random Walk with

Restart ( Ω(|E| + |V |), where |E| is the number of edges
of the graph and |V | is the number of nodes, is why QFG

and TQG have not been introduced until now.
The user study was conducted on the 50 queries from the

standard TREC Web diversification task test bed.
The assessment was conducted by a group of 10 assessors.

The assessors were researchers unaware of the used algo-
rithms, and not working on related topics. We generated the
top-5 recommendations per query for each technique evalu-
ated: OQ, CG, UF-IQF, SC, SQ, QFG, and TQG.

Using a web interface, each assessor was provided with a
random query from the test bed, followed by a list of rec-
ommended queries (the top-5 for each of the 7 methods)
selected by the different methods. Recommendations were
randomly shuffled, so that the assessors could not distinguish
which method produced them. Each assessor was asked to
assess each recommended query using the following scale:
useful, somewhat useful, and not useful.4 We gave assessors
the possibility of observing the search engine results for the
original query and the recommended query that was being
evaluated. The user study finished when each assessor had
assessed all recommendations for all 50 queries in the test
bed.

Table 8 reports the results of the user study. The overall
results and the results of unseen queries are reported sepa-
rately. Overall, for OQ, 45% of the recommendations were
judged useful or somewhat useful. This table shows that the
quality of the queries recommended by OQ are higher than
our baselines, and strictly higher in the somewhat category,
which demonstrates the orthogonality of our technique. UF-
IQF shows lower overall effectiveness, while only 25% of QFG

recommendations were judged useful or somewhat useful.
One reason for QFG’s recommendation failure is the pres-
ence of high in-degree nodes. Also, QFG does not provide
recommendations for unseen queries, while TQG solves this
issue. In fact, for TQG, 41% of the recommendations were
judged useful or somewhat useful, making it second-best in
our user study. For unseen queries, 25% of OQ recommenda-
tion were judged useful, while for TQG only 8% were judged
useful. In both cases, OQ was judged to be more useful than
all other methods.

5. CONCLUSIONS
We presented a new query recommendation technique based

on identifying orthogonal queries in an ad-hoc query answer
cache. In contrast to previous approaches, we intention-
ally seek out queries that are only moderately similar to the
original. Orthogonal queries aim to detect different inter-
pretations of the user’s query that go beyond the scope of
the user-provided keywords.

Our approach requires no training, is computationally ef-
ficient, and can be easily integrated into any search engine
with an answer cache (as answer caches are large, they can
be used as a proxy cache for our algorithm).

4Each assessor was given the following instructions: A useful
recommendation is a query such that if it were submitted to
a search engine, it would provide URL results that were not
available using the original query, and it would reflect the
user’s intent from the original query.

Our experimental results show that if the user is not sat-
isfied with the original URL results of a query (i.e., he is not
going to click on them), orthogonal query recommendations
can satisfy the user’s informational need, better than several
previous approaches. Also, orthogonal query recommenda-
tion is shown to be the best technique for long tail queries,
performing better than all previous techniques considered.

In the user study with the standard TREC Web diversifi-
cation task test bed, orthogonal query recommendation also
outperforms six known query recommendation methods, in-
cluding approaches that are notably more computationally
extensive. Orthogonal queries have the potential to improve
other aspects of web search. Future work will investigate
how they can be used in diversification of the web search
results.
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